Advertisement

Provenance Based Conflict Handling Strategies

  • Domenico Beneventano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7240)

Abstract

A fundamental task in data integration is data fusion, the process of fusing multiple records representing the same real-world object into a consistent representation; data fusion involves the resolution of possible conflicts between data coming from different sources; several high level strategies to handle inconsistent data have been described and classified in [8].

The MOMIS Data Integration System [2] uses either conflict avoiding strategies (such as the trust your friends strategy which takes the value of a preferred source) and resolution strategies (such as the meet in the middle strategy which takes an average value).

In this paper we consider other strategies proposed in literature to handle inconsistent data and we discuss how they can be adopted and extended in the MOMIS Data Integration System. First of all, we consider the methods introduced by the Trio system [1,6] and based on the idea to tackle data conflicts by explicitly including information on provenance to represent uncertainty and use it to answer queries. Other possible strategies are to ignore conflicting values at the global level (i.e., only consistent values are considered) and to consider at the global level all conflicting values.

The original contribution of this paper is a provenance-based framework which includes all the above mentioned conflict handling strategies and use them as different search strategies for querying the integrated sources.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T., Widom, J.: Trio: a system for data, uncertainty, and lineage. In: VLDB 2006: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 1151–1154. VLDB Endowment (2006)Google Scholar
  2. 2.
    Beneventano, D., Bergamaschi, S., Guerra, F., Orsini, M.: Data integration. In: Embley, D., Thalheim, B. (eds.) Handbook of Conceptual Modelling. Springer, Heidelberg (2010), http://dbgroup.unimo.it/SSE/SSE.pdf Google Scholar
  3. 3.
    Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: Synthesizing an integrated ontology. IEEE Internet Computing 7(5), 42–51 (2003)CrossRefGoogle Scholar
  4. 4.
    Beneventano, D., Dannoui, A.R., Sala, A.: Data lineage in the momis data fusion system. In: ICDE Workshops of the 27th International Conference on Data Engineering, ICDE 2011, Hannover, Germany, April 11-16, pp. 53–58 (2011)Google Scholar
  5. 5.
    Benjelloun, O., Sarma, A.D., Halevy, A., Widom, J.: Uldbs: databases with uncertainty and lineage. In: VLDB 2006: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 953–964. VLDB Endowment (2006)Google Scholar
  6. 6.
    Benjelloun, O., Sarma, A.D., Hayworth, C., Widom, J.: An introduction to uldbs and the trio system. IEEE Data Eng. Bull. 29(1), 5–16 (2006)Google Scholar
  7. 7.
    Bergamaschi, S., Castano, S., Vincini, M., Beneventano, D.: Semantic integration of heterogeneous information sources. Data Knowl. Eng. 36(3), 215–249 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1–41 (2008)CrossRefGoogle Scholar
  9. 9.
    Chomicki, J.: Consistent Query Answering: Five Easy Pieces. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 1–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations. The VLDB Journal 12(1), 41–58 (2003)CrossRefGoogle Scholar
  11. 11.
    Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environment. ACM Trans. Database Syst. 25(2), 179–227 (2000)CrossRefGoogle Scholar
  12. 12.
    Glavic, B., Alonso, G.: Perm: Processing provenance and data on the same data model through query rewriting. In: Proceedings of the 2009 IEEE International Conference on Data Engineering, pp. 174–185. IEEE Computer Society, Washington, DC (2009)CrossRefGoogle Scholar
  13. 13.
    Halevy, A., Li, C.: Information integration research: Summary of nsf idm workshop breakout session. In: NSF IDM Workshop (2003)Google Scholar
  14. 14.
    Halevy, A., Rajaraman, A., Ordille, J.: Data integration: the teenage years. In: VLDB 2006: Proceedings of the 32nd International Conference on Very Large Data Bases, pp. 9–16. VLDB Endowment (2006)Google Scholar
  15. 15.
    Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233–246 (2002)Google Scholar
  16. 16.
    Naumann, F., Freytag, J.C., Leser, U.: Completeness of integrated information sources. Inf. Syst. 29(7), 583–615 (2004)CrossRefGoogle Scholar
  17. 17.
    Sarma, A.D., Benjelloun, O., Halevy, A., Nabar, S., Widom, J.: Representing uncertain data: models, properties, and algorithms. The VLDB Journal 18(5), 989–1019 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Domenico Beneventano
    • 1
  1. 1.Department of Computer ScienceUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations