Introduction

Chapter

Abstract

This chapter gives a general introduction to the migratory movements of birds, and outlines the ultimate factors that govern the migratory behaviour. The remaining part of this monograph mainly deals with the proximate controlling factors. It is emphasized that the realised behaviour of avian migrants results from an interplay of their endogenous migratory programme and the environmental conditions the migrants encounter en route. The definitions of avian migration, migratory stopover, its duration, fuel deposition rate, and departure fuel load accepted in this monograph are given in this chapter.

Keywords

Winter Quarter Migratory Flight Stopover Duration Northern Wheatear Migratory Disposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alerstam T (2003) Bird migration speed. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, BerlinGoogle Scholar
  2. Alerstam T (2011) Optimal bird migration revisited. J Ornithol 152:S5–S25Google Scholar
  3. Alerstam T, Hedenström A (1998) The development of bird migration theory. J Avian Biol 29:343–369Google Scholar
  4. Alerstam T, Lindström Å (1990) Optimal bird migration: the relative importance of time, energy, and safety. In: Gwinner E (ed) Bird migration. Springer, BerlinGoogle Scholar
  5. Bairlein F (1992) Recent prospects on trans-Saharan migration of songbirds. Ibis 134(Suppl 1):41–46Google Scholar
  6. Barriocanal C, Robson D, Montserrat D (2002) Synoptic situation on long-step night migration by a reed warbler Acrocephalus scirpaceus on outward migration. Rev Catalana d’Ornitologia 19:30–34Google Scholar
  7. Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems, 4th edn. Blackwell, OxfordGoogle Scholar
  8. Berthold P (1973) Relationships between migratory restlessness and migration distance in six Sylvia species. Ibis 115:594–599Google Scholar
  9. Berthold P (1988) The control of migration in European warblers. In: Ouellet H (ed) Acta XIX Congr Int Ornithol, vol 1. University of Ottawa Press, OttawaGoogle Scholar
  10. Berthold P (1996) Control of bird migration. Chapman and Hall, LondonGoogle Scholar
  11. Berthold P (2001) Bird migration: a general survey, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  12. Berthold P, Leisler B (1980) Migratory restlessness of the Marsh Warbler Acrocephalus palustris: a reflection of its unusual migration. Naturwissenschaften 67:472Google Scholar
  13. Berthold P, Querner U (1981) Genetic basis of the migratory behavior in European warblers. Science 212:77–79PubMedGoogle Scholar
  14. Berthold P, Gwinner E, Klein H (1972) Circannuale Periodik bei Grasmücken. I. Periodik des Körpergewichts, der Mauser und der Nachtunruhe bei Sylvia atricapilla and S. borin unter verschiedenen konstanten Bedingungen. J Ornithol 113:170–190Google Scholar
  15. Biebach H (1990) Strategies of trans-Sahara migrants. In: Gwinner E (ed) Bird migration. Springer, BerlinGoogle Scholar
  16. Biebach H, Friedrich W, Heine G, Jenni L, Jenni-Eiermann S, Schmidl D (1991) The daily pattern of autumn bird migration in the northern Sahara. Ibis 133:414–422Google Scholar
  17. Biebach H, Biebach I, Friedrich W, Heine G, Partecke J, Schmidl D (2000) Strategies of passerine migration across the Mediterranean sea and the Sahara desert: a radar study. Ibis 142:623–634Google Scholar
  18. Blem CR (1976) Patterns of lipid storage and utilization in birds. Am Zool 16:671–684Google Scholar
  19. Blem CR (1990) Avian energy storage. In: Power DM (ed) Current ornithology, vol 7. Plenum Press, NYGoogle Scholar
  20. Bolshakov CV (1977) Izuchenie nochnykh migratsiy ptits [metodicheski aspekt] (Study of nocturnal bird migration [methodological aspect]). In: Ilyichev VD (ed) Metody izucheniya migratsiy ptits (Methods of studying bird migration). Nauka, MoscowGoogle Scholar
  21. Bruderer B (2001) Recent studies modifying current views of nocturnal bird migration in the Mediterranean. Avian Ecol Behav 7:11–25Google Scholar
  22. Bruderer B, Salewski V, Liechti F (2008) Gedanken zur Evolution des Vogelzuges. Orn Beob 105:165–177Google Scholar
  23. Bulyuk V, Chernetsov N (2000) Two migratory flights of sedge warblers Acrocephalus schoenobaenus from Finland to Estonia. Ornis Svecica 10:79–83Google Scholar
  24. Chernetsov N (2011) Daytime movements of nocturnal migrants at stopover between two nearby capture sites. J Ornithol 152:1007–1011Google Scholar
  25. Chernetsov N, Mukhin A (2006) Spatial behaviour of European robins Erithacus rubecula during migratory stopovers: a telemetry study. Wilson J Ornithol 118:364–373Google Scholar
  26. Chernetsov N, Mukhin A, Ktitorov P (2004) Contrasting spatial behaviour of two long-distance passerine migrants at spring stopovers. Avian Ecol Behav 12:53–61Google Scholar
  27. Chernetsov N, Kishkinev D, Gashkov S, Kosarev V, Bolshakov CV (2008a) Migratory programme of juvenile pied flycatchers, Ficedula hypoleuca, from Siberia implies a detour around Central Asia. Anim Behav 75:539–545Google Scholar
  28. Chernetsov N, Kishkinev D, Mouritsen H (2008b) A long-distance avian migrant compensates for longitudinal displacement during spring migration. Curr Biol 18:188–190PubMedGoogle Scholar
  29. Chernetsov N, Kishkinev D, Kosarev V, Bolshakov CV (2011) Not all songbirds calibrate their magnetic compass from twilight cues: a telemetry study. J Exp Biol 214:2540–2543PubMedGoogle Scholar
  30. Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408PubMedGoogle Scholar
  31. Connell CE, Odum EP, Kale H (1960) Fat-free weights of birds. Auk 77:1–9Google Scholar
  32. Dolnik VR (1975) Migratsionnoye sostoyanie ptits (Migratory disposition of birds). Nauka, MoscowGoogle Scholar
  33. Dolnik VR (ed) (1985) Energeticheskie resursy ptits, pereletayuschikh aridnye i gornye prostranstva Sredney Azii i Kazakhstana (Energy resources of birds migrating across arid and mountainous regions of Middle Asia and Kazakhstan). Zoological Institute, LeningradGoogle Scholar
  34. Dolnik VR (1990) Bird migration across arid and mountainous regions of Middle Asia and Kasakhstan. In: Gwinner E (ed) Bird migration. Springer, BerlinGoogle Scholar
  35. Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW, Silk JRD (2010) Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci USA 107:2078–2208PubMedGoogle Scholar
  36. Ellegren H, Staav R (1990) Ruggingsflyttning hos blåhaken Luscinia s. svecica. Vår Fågelvärld 49:80–86Google Scholar
  37. Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A (2001) Magnetic cues trigger extensive refuelling. Nature 414:35–36PubMedGoogle Scholar
  38. Freake M, Muheim R, Phillips JB (2006) Magnetic maps in animals: a theory comes of age? Q Rev Biol 81:327–347PubMedGoogle Scholar
  39. Gauthreaux SA Jr (1971) A radar and direct visual study of passerine spring migration in southern Louisiana. Auk 88:343–365Google Scholar
  40. Gauthreaux SA Jr (1972) Behavioral responses of migrating birds to daylight and darkness: a radar and direct visual study. Wilson Bull 84:136–148Google Scholar
  41. Gauthreaux SA Jr (1982) The ecology and evolution of avian migration systems. In: Farner DS, King JR (eds) Avian biology, vol 6. Academic Press, NYGoogle Scholar
  42. Gavrilov VM (1974) Metabolizm linyayuschikh ptits (Metabolism of moulting birds). Zool Zhurnal 53:1363–1375Google Scholar
  43. Gill RE Jr, Piersma T, Hufford G, Servranckx R, Riegen A (2005) Crossing the ultimate ecological barrier: evidence for an 11,000 km-long nonstop flight from Alaska to New Zealand and eastern Australia by bar-tailed godwits. Condor 107:1–20Google Scholar
  44. Gill RE Jr, Tibbits TL, Douglas DC, Handel CM, Mulcahy DM, Gottschalck JC, Warnock N, McCaffery BJ, Battley PF, Piersma T (2009) Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc R Soc Lond B 276:447–457Google Scholar
  45. Gschweng M, Kalko EKV, Querner U, Fiedler W, Berthold P (2008) All across Africa: highly individual migration routes of Eleonora’s falcon. Proc R Soc Lond B 275:2887–2896Google Scholar
  46. Gwinner E (1968) Circannuale Periodik als Grundlage des jahreszeitlichen Funktionswandels bei Zugvögeln. Untersuchungen am Fitis (Phylloscopus trochilus) und am Waldlaubsänger (P. sibilatrix). J Ornithol 109:70–95Google Scholar
  47. Gwinner E (1986) Circannual rhythms in the control of avian migrations. Adv Stud Behav 16:191–228Google Scholar
  48. Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 99:39–48Google Scholar
  49. Gwinner E, Wiltschko W (1978) Endogenously controlled changes in migratory direction of the garden warbler, Sylvia borin. J Comp Physiol A 125:267–273Google Scholar
  50. Hall-Karlsson KSS, Fransson T (2008) How far do birds fly during one migratory flight stage? Ring Migr 24:95–100Google Scholar
  51. Helbig AJ (1996) Genetic basis, mode of inheritance and evolutionary changes of migratory directions in Palearctic warblers (Aves: Sylviidae). J Exp Biol 199:49–55PubMedGoogle Scholar
  52. Hobson KA, Robbins MB (2009) Origins of late-breeding nomadic sedge wrens in North America: limitations and potential of hydrogen-isotope analysis of soft tissue. Condor 111:188–192Google Scholar
  53. Houston AI (1998) Models of optimal avian migration: state, time and predation. J Avian Biol 29:395–404Google Scholar
  54. Kaiser A (1999) Stopover strategies in birds: a review of methods for estimating stopover length. Bird Study 46(Suppl):S299–S308Google Scholar
  55. Klaassen M, Biebach H (1994) Energetics of fattening and starvation in the long-distance migratory garden warbler, Sylvia borin, during the migratory phase. J Comp Physiol B 164:362–371Google Scholar
  56. Klaassen M, Kersten M, Ens BJ (1990) Energetic requirements for maintenance and premigratory body mass gain of waders wintering in Africa. Ardea 78:209–220Google Scholar
  57. Klaassen M, Lindström Å, Zijlstra R (1997) Composition of fuel stores and digestive limitations to fuel deposition rate in the long-distance migratory thrush nightingale, Luscinia luscinia. Physiol Zool 70:125–133PubMedGoogle Scholar
  58. Kramer G (1949) Über Richtungstendenzen bei der nächtlichen Zugunruhe gekäfigter Vögel. In: Mayr E, Schüz E (eds) Ornithologie als biologische Wissenschaft. Carl Winter Universitätsverlag, HeidelbergGoogle Scholar
  59. Krebs JR, Davies NB (eds) (1991) Behavioural ecology: an evolutionary approach, 3rd edn. Blackwell, OxfordGoogle Scholar
  60. Kullberg C, Lind J, Fransson T, Jakobsson S, Vallin A (2003) Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia). Proc R Soc Lond B 270:373–378Google Scholar
  61. Kullberg C, Henshaw I, Jakobsson S, Johansson P, Fransson T (2007) Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect. Proc R Soc Lond B 274:2145–2151Google Scholar
  62. Liechti F, Komenda-Zehnder S, Bruderer B (2012) Orientation of passerine trans-Sahara migrants: the directional shift (‘Zugknick’) reconsidered for free-flying birds. Anim Behav 83:63–68Google Scholar
  63. Lindström Å, Piersma T (1993) Mass changes in migrating birds: the evidence for fat and protein storage re-examined. Ibis 135:70–78Google Scholar
  64. López-López P, Limiñana R, Mellone U, Urios V (2010) From the Mediterranean Sea to Madagascar: are there ecological barriers for the long-distance migrant Eleonora’s falcon? Landscape Ecol 25:803–813Google Scholar
  65. Lyuleeva DS (1970) Energiya poleta u lastochek i strizhey (Energy of flight in swallows and swifts). Doklady Acad Sci USSR 190:1467–1469Google Scholar
  66. McLandress MR, Raveling DG (1981) Changes in diet and body composition of Canada geese before spring migration. Auk 98:65–79Google Scholar
  67. Moore FR (1990) Evidence for redetermination of migratory direction following wind displacement. Auk 107:425–428Google Scholar
  68. Muheim R, Phillips JB, Åkesson S (2006) Polarized light cues underlie compass calibration in migratory songbirds. Science 313:837–839PubMedGoogle Scholar
  69. Muheim R, Åkesson S, Phillips JB (2007) Magnetic compass of migratory Savannah sparrows is calibrated by skylight polarization at sunrise and sunset. J Ornithol 148(Suppl 2):S485–S494Google Scholar
  70. Muheim R, Phillips JB, Deutschlander ME (2009) White-throated sparrows calibrate their magnetic compass by polarized light cues during both autumn and spring migration. J Exp Biol 212:3466–3472PubMedGoogle Scholar
  71. Murphy ME (1991) Energetics and nutrition of molt. In: Carey C (ed) Avian energetics and nutritional ecology. Chapman and Hall, NYGoogle Scholar
  72. Nathan R, Perry G, Cronin JT, Strand AE, Cain ML (2003) Methods for estimating long-distance dispersal. Oikos 103:261–273Google Scholar
  73. Newton I (2008) The migration ecology of birds. Academic Press, LondonGoogle Scholar
  74. Noskov GA, Rymkevich TA (2005) Formy migratsionnoy aktivnosti v godovom tsikle ptits (Forms of migratory activity in the annual cycle of birds). In: Iovchenko NP (ed) Ornitologicheskie issledovaniya v Priladozhye (Ornithological research in the Ladoga area). St. Petersburg University Press, St. PetersburgGoogle Scholar
  75. Noskov GA, Rymkevich TA (2008) Migratsionnaya aktivnost’ v godovom tsikle vorobyinykh ptits i formy ee proyavleniya (Migratory activity in the annual cycle of passerines and the forms of its manifestation). Zool Zhurnal 87:446–457Google Scholar
  76. Odum EP, Rogers DT, Hicks DL (1964) Homeostasis of the nonfat components of migrating birds. Science 143:1037–1039PubMedGoogle Scholar
  77. Odum EP, Marshall SG, Marples TG (1965) The caloric content of migrating birds. Ecology 46:901–904Google Scholar
  78. Paxton KL, Van Riper C III, O’Brien C (2008) Movements patterns and stopover ecology of Wilson’s warblers during spring migration on the lower Colorado river in southwestern Arizona. Condor 110:672–681Google Scholar
  79. Piersma T (1990) Pre-migratory ‘fattening’ usually involved more than the deposition of fat alone. Ring Migr 11:113–115Google Scholar
  80. Piersma T, Pérez-Tris J, Mouritsen H, Bauchinger U, Bairlein F (2005) Is there a ‘migratory syndrome’ common to all migrant birds? Ann NY Acad Sci 1046:282–293PubMedGoogle Scholar
  81. Pulido F, Berthold P, Mohr G, Querner U (2001) Heritability of the timing of autumn migration in a natural bird population. Proc R Soc Lond B 268:953–959Google Scholar
  82. Rabøl J (1985) The moving goal area and the orientation system of migrant birds. Dansk Orn Foren Tidsskr 79:29–42Google Scholar
  83. Rabøl J (2010) Orientation by passerine birds under conflicting magnetic and stellar conditions: no calibration in relation to the magnetic field. Dansk Orn Foren Tidskr 104:85–102Google Scholar
  84. Rappole JH (2005) Evolution of Old and New World migration systems: a response to Bell. Ardea 93:125–131Google Scholar
  85. Rohwer S, Hobson KA, Rohwer VG (2009) Migratory double breeding in Neotropical migrant birds. Proc Natl Acad Sci USA 106:19050–19055PubMedGoogle Scholar
  86. Salewski V, Bruderer B (2007) The evolution of bird migration—a synthesis. Naturwissenschaften 94:268–279PubMedGoogle Scholar
  87. Schaub M, Kania W, Köppen U (2005) Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J Anim Ecol 74:656–666Google Scholar
  88. Schmaljohann H, Liechti F, Bruderer B (2007) Songbird migration across the Sahara: the non-stop hypothesis rejected! Proc R Soc Lond B 274:735–739Google Scholar
  89. Schwilch R, Grattarola A, Spina F, Jenni L (2002) Protein loss during long-distance migratory flight in passerine birds: adaptation and constraints. J Exp Biol 205:687–695PubMedGoogle Scholar
  90. Terrill SB (1990) Evolutionary aspects of orientation and migration in birds. Experientia 46:395–404Google Scholar
  91. Terrill SB, Able KP (1988) Bird migration terminology. Auk 105:205–206Google Scholar
  92. Thorup K, Bisson I-A, Bowlin MS, Holland RA, Wingfield JC, Ramenofsky M, Wikelski M (2007) Evidence for a navigational map stretching across the continental U.S. in a migratory songbird. Proc Natl Acad Sci USA 104:18115–18119PubMedGoogle Scholar
  93. Titov N (1999) Home ranges in two passerine nocturnal migrants at a stopover site in autumn. Avian Ecol Behav 3:69–78Google Scholar
  94. Tøttrup AP, Klaassen RHG, Strandberg R, Thorup K, Kristensen MW, Jørgensen PS, Fox J, Afanasyev V, Rahbek C, Alerstam T (2012) The annual cycle of a trans-equatorial Eurasian-African passerine migrant: different spatio-temporal strategies for autumn and spring migration. Proc R Soc B 279:1008–1016PubMedGoogle Scholar
  95. Wang Y, Moore FR (1993) Relation between migratory activity and energetic condition among thrushes (Turdinae) following passage across the Gulf of Mexico. Condor 95:934–943Google Scholar
  96. Ward MP, Raim A (2011) The fly-and-social foraging hypothesis for diurnal migration: why American crows migrate during the day. Behav Ecol Sociobiol 65:1411–1418Google Scholar
  97. Weber TP, Houston AI (1997) A general model for time-minimising avian migration. J Theor Biol 185:447–458Google Scholar
  98. Wikelski M, Tarlow EM, Raim A, Diehl RH, Larkin RP, Visser GH (2003) Costs of migration in free-flying songbirds. Nature 423:704PubMedGoogle Scholar
  99. Williams TC, Williams JM (1990) The orientation of transoceanic migrants. In: Gwinner E (ed) Bird migration. Springer, BerlinGoogle Scholar
  100. Winker K (2000) Migration and speciation. Nature 404:36PubMedGoogle Scholar
  101. Yohannes E, Hobson KA, Pearson DJ, Wassenaar LI (2005) Stable isotope analysis of feathers help identify autumn stopover sites of three long-distance migrants in northeastern Africa. J Avian Biol 36:235–241Google Scholar
  102. Yohannes E, Biebach H, Nikolaus G, Pearson DJ (2009) Passerine migration strategies and body mass variation along geographic sectors across east Africa, the Middle East and the Arabian Peninsula. J Ornithol 150:369–381Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Biological Station RybachyZoological InstituteSt. PetersburgRussia

Personalised recommendations