Abstract

We consider the problem of fairness in two-party computation, where this means (informally) that both parties should learn the correct output. A seminal result of Cleve (STOC 1986) shows that fairness is, in general, impossible to achieve for malicious parties. Here, we treat the parties as rational and seek to understand what can be done.

Asharov et al. (Eurocrypt 2011) recently considered this problem and showed impossibility of rational fair computation for a particular function and a particular set of utilities. We observe, however, that in their setting the parties have no incentive to compute the function even in an ideal world where fairness is guaranteed. Revisiting the problem, we show that rational fair computation is possible, for arbitrary functions and utilities, as long as at least one of the parties has a strict incentive to compute the function in the ideal world. This gives a novel setting in which game-theoretic considerations can be used to circumvent an impossibility result in cryptography.

References

  1. 1.
    Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game theory: robust mechanisms for rational secret sharing and multiparty computation. In: 25th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 53–62. ACM Press (2006)Google Scholar
  2. 2.
    Asharov, G., Canetti, R., Hazay, C.: Towards a Game Theoretic View of Secure Computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 426–445. Springer, Heidelberg (2011), Full version available at, http://eprint.iacr.org/2011/137 CrossRefGoogle Scholar
  3. 3.
    Asharov, G., Lindell, Y.: Utility dependence in correct and fair rational secret sharing. Journal of Cryptology 24(1), 157–202 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Barany, I.: Fair distribution protocols, or how the players replace fortune. Mathematics of Operations Research 17, 327–340 (1992)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13(1), 143–202 (2000)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Cleve, R.: Limits on the security of coin flips when half the processors are faulty. In: 18th Annual ACM Symposium on Theory of Computing (STOC), pp. 364–369. ACM Press (1986)Google Scholar
  7. 7.
    Crawford, V., Sobel, J.: Strategic information transmission. Econometrica 50, 1431–1451 (1982)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Dodis, Y., Halevi, S., Rabin, T.: A Cryptographic Solution to a Game Theoretic Problem. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 112–130. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Dodis, Y., Rabin, T.: Cryptography and game theory. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory, pp. 181–207. Cambridge University Press (2007)Google Scholar
  10. 10.
    Forges, F.: Universal mechanisms. Econometrica 58, 1342–1364 (1990)MathSciNetGoogle Scholar
  11. 11.
    Fuchsbauer, G., Katz, J., Naccache, D.: Efficient Rational Secret Sharing in Standard Communication Networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 419–436. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-party computation. J. ACM 58(6) (2011)Google Scholar
  13. 13.
    Gordon, S.D., Katz, J.: Rational Secret Sharing, Revisited. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Gordon, S.D., Katz, J.: Partial fairness in secure two-party computation. Journal of Cryptology 25(1), 14–40 (2012)CrossRefGoogle Scholar
  15. 15.
    Gradwohl, R.: Rationality in the Full-Information Model. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 401–418. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Gradwohl, R., Livne, N., Rosen, A.: Sequential rationality in cryptographic protocols. In: 51st FOCS Annual Symposium on Foundations of Computer Science (FOCS), pp. 623–632. IEEE (2010)Google Scholar
  17. 17.
    Halpern, J., Teague, V.: Rational secret sharing and multiparty computation. In: 36th Annual ACM Symposium on Theory of Computing (STOC), pp. 623–632. ACM Press (2004)Google Scholar
  18. 18.
    Izmalkov, S., Lepinski, M., Micali, S.: Verifiably Secure Devices. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 273–301. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Izmalkov, S., Lepinski, M., Micali, S.: Perfect implementation. Games and Economic Behavior 71(1), 121–140 (2011), http://hdl.handle.net/1721.1/50634 MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Izmalkov, S., Micali, S., Lepinski, M.: Rational secure computation and ideal mechanism design. In: 46th FOCSAnnual Symposium on Foundations of Computer Science (FOCS), pp. 585–595. IEEE (2005), Full version available at, http://dspace.mit.edu/handle/1721.1/38208
  21. 21.
    Katz, J.: Bridging Game Theory and Cryptography: Recent Results and Future Directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Kol, G., Naor, M.: Cryptography and Game Theory: Designing Protocols for Exchanging Information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Kol, G., Naor, M.: Games for exchanging information. In: 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 423–432. ACM Press (2008)Google Scholar
  24. 24.
    Lepinski, M., Micali, S., Peikert, C., Shelat, A.: Completely fair SFE and coalition-safe cheap talk. In: 23rd ACM PODCAnnual ACM Symposium on Principles of Distributed Computing (PODC), pp. 1–10. ACM Press (2004)Google Scholar
  25. 25.
    Lepinski, M., Micali, S., Shelat, A.: Collusion-free protocols. In: 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 543–552. ACM Press (2005)Google Scholar
  26. 26.
    Lysyanskaya, A., Triandopoulos, N.: Rationality and Adversarial Behavior in Multi-party Computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 180–197. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Micali, S., Shelat, A.: Purely Rational Secret Sharing (Extended Abstract). In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 54–71. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Moran, T., Naor, M., Segev, G.: An Optimally Fair Coin Toss. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 1–18. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.: Fairness with an Honest Minority and a Rational Majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 36–53. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Adam Groce
    • 1
  • Jonathan Katz
    • 1
  1. 1.Department of Computer ScienceUniversity of MarylandUSA

Personalised recommendations