Pseudorandom Functions and Lattices

  • Abhishek Banerjee
  • Chris Peikert
  • Alon Rosen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7237)

Abstract

We give direct constructions of pseudorandom function (PRF) families based on conjectured hard lattice problems and learning problems. Our constructions are asymptotically efficient and highly parallelizable in a practical sense, i.e., they can be computed by simple, relatively small low-depth arithmetic or boolean circuits (e.g., in NC1 or even TC0). In addition, they are the first low-depth PRFs that have no known attack by efficient quantum algorithms. Central to our results is a new “derandomization” technique for the learning with errors (LWE) problem which, in effect, generates the error terms deterministically.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boneh, D., Boyen, X.: Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext Hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Ajtai, M.: Generating hard instances of lattice problems. Quaderni di Matematica 13, 1–32 (2004); Preliminary version in STOC 1996MathSciNetGoogle Scholar
  4. 4.
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Arora, S., Ge, R.: New Algorithms for Learning in Presence of Errors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 403–415. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Banerjee, A., Ben-Zvi, N., Peikert, C., Rosen, A.: SPRINT: Efficient pseudorandomness via rounded integer products (2011) (manuscript)Google Scholar
  7. 7.
    Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. Cryptology ePrint Archive, Report 2011/401 (2011), http://eprint.iacr.org/
  8. 8.
    Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom functions with improved efficiency from the augmented cascade. In: ACM Conference on Computer and Communications Security, pp. 131–140 (2010)Google Scholar
  10. 10.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. Cryptology ePrint Archive, Report 2011/277 (2011), http://eprint.iacr.org/
  11. 11.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS, pp. 97–106 (2011)Google Scholar
  12. 12.
    Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)Google Scholar
  13. 13.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  15. 15.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)Google Scholar
  16. 16.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986); Preliminary version in FOCS 1984MathSciNetCrossRefGoogle Scholar
  17. 17.
    Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: ICS, pp. 230–240 (2010)Google Scholar
  18. 18.
    Hopper, N.J., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Juels, A., Weis, S.A.: Authenticating Pervasive Devices with Human Protocols. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Katz, J., Shin, J.S., Smith, A.: Parallel and concurrent security of the HB and HB\(^{\mbox{+}}\) protocols. J. Cryptology 23(3), 402–421 (2010); Preliminary version in Eurocrypt 2006MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient Authentication from Hard Learning Problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 7–26. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261(4), 515–534 (1982)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional linear assumption and weaker variants. In: ACM Conference on Computer and Communications Security, pp. 112–120 (2009)Google Scholar
  24. 24.
    Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A Modest Proposal for FFT Hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Micciancio, D., Mol, P.: Pseudorandom Knapsacks and the Sample Complexity of LWE Search-to-Decision Reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011)Google Scholar
  27. 27.
    Micciancio, D., Peikert, C.: Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)Google Scholar
  28. 28.
    Naor, M., Reingold, O.: Synthesizers and their application to the parallel construction of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999); Preliminary version in FOCS 1995MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. ACM 51(2), 231–262 (2004); Preliminary version in FOCS 1997MathSciNetCrossRefGoogle Scholar
  30. 30.
    Naor, M., Reingold, O., Rosen, A.: Pseudorandom functions and factoring. SIAM J. Comput. 31(5), 1383–1404 (2002); Preliminary version in STOC 2000MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: STOC, pp. 333–342 (2009)Google Scholar
  32. 32.
    Peikert, C.: An Efficient and Parallel Gaussian Sampler for Lattices. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010)Google Scholar
  33. 33.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC, pp. 187–196 (2008)Google Scholar
  34. 34.
    Pietrzak, K.: Subspace LWE (2010) (manuscript), http://homepages.cwi.nl/~pietrzak/publications/SLWE.pdf (Last retrieved from June 28, 2011)
  35. 35.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 1–40 (2009); Preliminary version in STOC 2005MathSciNetCrossRefGoogle Scholar
  36. 36.
    Reif, J.H., Tate, S.R.: On threshold circuits and polynomial computation. SIAM J. Comput. 21(5), 896–908 (1992)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 53, 201–224 (1987)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Abhishek Banerjee
    • 1
  • Chris Peikert
    • 1
  • Alon Rosen
    • 2
  1. 1.Georgia Institute of TechnologyUSA
  2. 2.IDC HerzliyaIsrael

Personalised recommendations