Detecting Dangerous Queries: A New Approach for Chosen Ciphertext Security

  • Susan Hohenberger
  • Allison Lewko
  • Brent Waters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7237)

Abstract

We present a new approach for creating chosen ciphertext secure encryption. The focal point of our work is a new abstraction that we call Detectable Chosen Ciphertext Security (DCCA). Intuitively, this notion is meant to capture systems that are not necessarily chosen ciphertext attack (CCA) secure, but where we can detect whether a certain query CT can be useful for decrypting (or distinguishing) a challenge ciphertext CT*.

We show how to build chosen ciphertext secure systems from DCCA security. We motivate our techniques by describing multiple examples of DCCA systems including creating them from 1-bit CCA secure encryption — capturing the recent Myers-shelat result (FOCS 2009). Our work identifies DCCA as a new target for building CCA secure systems.

Keywords

Encryption Scheme Encryption System Defense Advance Research Project Agency Challenge Ciphertext Decryption Oracle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    An, J.H., Dodis, Y., Rabin, T.: On the Security of Joint Signature and Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek, S.: Hedged Public-Key Encryption: How to Protect against Bad Randomness. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  4. 4.
    Bellare, M., Sahai, A.: Non-malleable Encryption: Equivalence between Two Notions, and an Indistinguishability-Based Characterization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 519–536. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: STOC, pp. 103–112 (1988)Google Scholar
  6. 6.
    Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing Chosen-Ciphertext Security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Cash, D.M., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman Problem and Applications. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.M.: Black-Box Construction of a Non-malleable Encryption Scheme from Any Semantically Secure One. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A., Vaikuntanathan, V.: Bounded CCA2-Secure Encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: STOC, pp. 542–552 (1991)Google Scholar
  15. 15.
    Gertner, Y., Malkin, T., Reingold, O.: On the impossibility of basing trapdoor functions on trapdoor predicates. In: FOCS, pp. 126–135 (2001)Google Scholar
  16. 16.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hofheinz, D., Kiltz, E.: Secure Hybrid Encryption from Weakened Key Encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Hofheinz, D., Kiltz, E.: Practical Chosen Ciphertext Secure Encryption from Factoring. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Kiltz, E.: Chosen-Ciphertext Security from Tag-Based Encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive Trapdoor Functions and Chosen-Ciphertext Security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 673–692. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    MacKenzie, P.D., Reiter, M.K., Yang, K.: Alternatives to Non-malleability: Definitions, Constructions, and Applications (Extended Abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 171–190. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS, pp. 607–616 (2009)Google Scholar
  23. 23.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC, pp. 427–437 (1990)Google Scholar
  24. 24.
    Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a Non-malleable Encryption Scheme from Any Semantically Secure One. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC, pp. 187–196 (2008)Google Scholar
  26. 26.
    Rackoff, C., Simon, D.R.: Non-interactive Zero-Knowledge Proof of Knowledge and Chosen Ciphertext Attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  27. 27.
    Rosen, A., Segev, G.: Chosen-Ciphertext Security via Correlated Products. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  28. 28.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS, pp. 543–553 (1999)Google Scholar
  29. 29.
    Shoup, V.: A proposal for an ISO standard for public key encryption. Cryptology ePrint Archive, Report 2001/112 (2001), http://eprint.iacr.org/

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Susan Hohenberger
    • 1
  • Allison Lewko
    • 2
  • Brent Waters
    • 2
  1. 1.Johns Hopkins UniversityUSA
  2. 2.University of Texas at AustinUSA

Personalised recommendations