On the Exact Security of Schnorr-Type Signatures in the Random Oracle Model

  • Yannick Seurin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7237)

Abstract

The Schnorr signature scheme has been known to be provably secure in the Random Oracle Model under the Discrete Logarithm (DL) assumption since the work of Pointcheval and Stern (EUROCRYPT ’96), at the price of a very loose reduction though: if there is a forger making at most qh random oracle queries, and forging signatures with probability εF, then the Forking Lemma tells that one can compute discrete logarithms with constant probability by rewinding the forger \({\mathcal O}(q_h/\varepsilon_F)\) times. In other words, the security reduction loses a factor \({\mathcal O}(q_h)\) in its time-to-success ratio. This is rather unsatisfactory since qh may be quite large. Yet Paillier and Vergnaud (ASIACRYPT 2005) later showed that under the One More Discrete Logarithm (OMDL) assumption, any algebraic reduction must lose a factor at least \(q_h^{1/2}\) in its time-to-success ratio. This was later improved by Garg et al. (CRYPTO 2008) to a factor \(q_h^{2/3}\). Up to now, the gap between \(q_h^{2/3}\) and qh remained open. In this paper, we show that the security proof using the Forking Lemma is essentially the best possible. Namely, under the OMDL assumption, any algebraic reduction must lose a factor f(εF)qh in its time-to-success ratio, where f ≤ 1 is a function that remains close to 1 as long as εF is noticeably smaller than 1. Using a formulation in terms of expected-time and queries algorithms, we obtain an optimal loss factor Ω(qh), independently of εF. These results apply to other signature schemes based on one-way group homomorphisms, such as the Guillou-Quisquater signature scheme.

Keywords

Schnorr signatures discrete logarithm Forking Lemma Random Oracle Model meta-reduction one-way group homomorphism 

References

  1. 1.
    Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-Inversion Problems and the Security of Chaum’s Blind Signature Scheme. Journal of Cryptology 16(3), 185–215 (2003)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  3. 3.
    Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures - How to Sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Venkatesan, R.: Breaking RSA May Not Be Equivalent to Factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Bresson, E., Monnerat, J., Vergnaud, D.: Separation Results on the “One-More” Computational Problems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 71–87. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Brown, D.R.L.: Irreducibility to the One-More Evaluation Problems: More May Be Less. ePrint Archive Report 2007/435 (2007), http://eprint.iacr.org/2007/435.pdf
  8. 8.
    Chevallier-Mames, B.: An Efficient CDH-Based Signature Scheme with a Tight Security Reduction. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 511–526. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Coron, J.-S.: On the Exact Security of Full Domain Hash. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Coron, J.-S.: Optimal Security Proofs for PSS and Other Signature Schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Dodis, Y., Reyzin, L.: On the Power of Claw-Free Permutations. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 55–73. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  13. 13.
    Fischlin, M.: Communication-Efficient Non-interactive Proofs of Knowledge with Online Extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Garg, S., Bhaskar, R., Lokam, S.V.: Improved Bounds on Security Reductions for Discrete Log Based Signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 93–107. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Goh, E.-J., Jarecki, S.: A Signature Scheme as Secure as the Diffie-Hellman Problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Goh, E.-J., Jarecki, S., Katz, J., Wang, N.: Efficient Signature Schemes with Tight Reductions to the Diffie-Hellman Problems. Journal of Cryptology 20(4), 493–514 (2007)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Goldwasser, S., Kalai, Y.T.: On the (In)security of the Fiat-Shamir Paradigm. In: Symposium on Foundations of Computer Science, FOCS 2003, pp. 102–115. IEEE Computer Society (2003)Google Scholar
  18. 18.
    Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight security reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM Conference on Computer and Communications Security, pp. 155–164. ACM (2003)Google Scholar
  19. 19.
    Koblitz, N., Menezes, A.: Another Look at Non-Standard Discrete Log and Diffie-Hellman Problems. ePrint Archive Report 2007/442 (2007), http://eprint.iacr.org/2007/442.pdf
  20. 20.
    Micali, S., Reyzin, L.: Improving the Exact Security of Digital Signature Schemes. Journal of Cryptology 15(1), 1–18 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Neven, G., Smart, N.P., Warinschi, B.: Hash Function Requirements for Schnorr Signatures. J. Math. Crypt. 3(1), 69–87 (2009)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Paillier, P., Vergnaud, D.: Discrete-Log-Based Signatures May Not Be Equivalent to Discrete Log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Pointcheval, D., Stern, J.: Security Proofs for Signature Schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)Google Scholar
  24. 24.
    Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology 13(3), 361–396 (2000)MATHCrossRefGoogle Scholar
  25. 25.
    Schnorr, C.-P.: Efficient Identification and Signatures for Smart Cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)Google Scholar
  26. 26.
    Schnorr, C.-P.: Efficient Signature Generation by Smart Cards. Journal of Cryptology 4(3), 161–174 (1991)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Seurin, Y.: On the Exact Security of Schnorr-Type Signatures in the Random Oracle Model. Full version of this paper, http://eprint.iacr.org
  28. 28.
    Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Yannick Seurin
    • 1
  1. 1.ANSSIParisFrance

Personalised recommendations