Efficient Zero-Knowledge Argument for Correctness of a Shuffle

  • Stephanie Bayer
  • Jens Groth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7237)

Abstract

Mix-nets are used in e-voting schemes and other applications that require anonymity. Shuffles of homomorphic encryptions are often used in the construction of mix-nets. A shuffle permutes and re-encrypts a set of ciphertexts, but as the plaintexts are encrypted it is not possible to verify directly whether the shuffle operation was done correctly or not. Therefore, to prove the correctness of a shuffle it is often necessary to use zero-knowledge arguments.

We propose an honest verifier zero-knowledge argument for the correctness of a shuffle of homomorphic encryptions. The suggested argument has sublinear communication complexity that is much smaller than the size of the shuffle itself. In addition the suggested argument matches the lowest computation cost for the verifier compared to previous work and also has an efficient prover. As a result our scheme is significantly more efficient than previous zero-knowledge schemes in literature.

We give performance measures from an implementation where the correctness of a shuffle of 100,000 ElGamal ciphertexts is proved and verified in around 2 minutes.

Keywords

Shuffle zero-knowledge ElGamal encryption mix-net voting anonymous broadcast 

References

  1. 1.
    Abe, M.: Universally Verifiable Mix-Net with Verification Work Independent of the Number of Mix-Servers. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 437–447. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Abe, M.: Mix-Networks on Permutation Networks. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Abe, M., Hoshino, F.: Remarks on Mix-Network Based on Permutation Networks. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–88 (1981)CrossRefGoogle Scholar
  5. 5.
    Cook, S.: On the minimum computation time of functions. PhD thesis, Department of Mathematics, Harvard University (1966), http://cr.yp.to/bib/1966/cook.html
  6. 6.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier series. Math. Comp. 19, 297–301 (1965)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Transactions 88-A(1), 172–188 (2005)Google Scholar
  8. 8.
    Furukawa, J., Miyauchi, H., Mori, K., Obana, S., Sako, K.: An Implementation of a Universally Verifiable Electronic Voting Scheme Based on Shuffling. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 16–30. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Furukawa, J., Mori, K., Sako, K.: An Implementation of a Mix-Net Based Network Voting Scheme and Its Use in a Private Organization. In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp. 141–154. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Furukawa, J., Sako, K.: An Efficient Scheme for Proving a Shuffle. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Garay, J., MacKenzie, P., Yang, K.: Strengthening zero-knowledge protocols using signatures. J. Cryptology 19(2), 169–209 (2006)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Groth, J.: Honest verifier zero-knowledge arguments applied. Dissertation Series DS-04-3, BRICS, 2004. PhD thesis. xii+119 (2004)Google Scholar
  13. 13.
    Groth, J.: Linear Algebra with Sub-linear Zero-Knowledge Arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J. Cryptology 23(4), 546–579 (2010)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Groth, J., Ishai, Y.: Sub-linear Zero-Knowledge Argument for Correctness of a Shuffle. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Groth, J., Lu, S.: Verifiable Shuffle of Large Size Ciphertexts. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 377–392. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata. Soviet Physics Dokl. 7, 595–596 (1963)Google Scholar
  18. 18.
    Lim, C.: Efficient multi-exponentiation and application to batch verification of digital signatures (2000), http://dasan.sejong.ac.kr/~chlim/pub/multiexp.ps
  19. 19.
    Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation. J. Cryptology 16(3), 143–184 (2003)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: ACM CCS, pp. 116–125 (2001)Google Scholar
  21. 21.
    Neff, C.A.: Verifiable mixing (shuffling) of elgamal pairs (2003), http://people.csail.mit.edu/rivest/voting/papers/Neff-2004-04-21-ElGamalShuffles.pdf
  22. 22.
    Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  23. 23.
    Sako, K., Kilian, J.: Receipt-Free Mix-Type Voting Scheme - A Practical Solution to the Implementation of a Voting Booth. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)Google Scholar
  24. 24.
    Shoup, V.: Ntl library (2009), http://www.shoup.net/ntl/
  25. 25.
    Terelius, B., Wikström, D.: Proofs of Restricted Shuffles. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Toom, A.: The complexity of a scheme of functional elements realizing the multiplication of integers (2000), http://www.de.ufpe.br/~toom/my_articles/engmat/MULT-E.PDF
  27. 27.
    Wikström, D.: The Security of a Mix-Center Based on a Semantically Secure Cryptosystem. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 368–381. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. 28.
    Wikström, D.: A Commitment-Consistent Proof of a Shuffle. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Wikström, D.: Verificatum (2010), http://www.verificatum.com/

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Stephanie Bayer
    • 1
  • Jens Groth
    • 1
  1. 1.University College LondonUK

Personalised recommendations