We motivate, define and construct quantum proofs of knowledge, proofs of knowledge secure against quantum adversaries. Our constructions are based on a new quantum rewinding technique that allows us to extract witnesses in many classical proofs of knowledge. We give criteria under which a classical proof of knowledge is a quantum proof of knowledge. Combining our results with Watrous’ results on quantum zero-knowledge, we show that there are zero-knowledge quantum proofs of knowledge for all languages in NP (assuming quantum 1-1 one-way functions).


Hamiltonian Cycle Proof System Commitment Scheme Auxiliary Input Oracle Access 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aaronson, S.: Limitations of quantum advice and one-way communication. Theory of Computing 1(1), 1–28 (2005), http://www.theoryofcomputing.org/articles/v001a001 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Adcock, M., Cleve, R.: A Quantum Goldreich-Levin Theorem with Cryptographic Applications. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 323–334. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993), http://www-cse.ucsd.edu/users/mihir/papers/pok.ps Google Scholar
  4. 4.
    Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the International Congress of Mathematicians, Berkeley, pp. 1444–1451 (1986)Google Scholar
  5. 5.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game – or – a completeness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229 (1987)Google Scholar
  6. 6.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM 38(3), 690–728 (1991), http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf MathSciNetCrossRefGoogle Scholar
  7. 7.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pp. 291–304. ACM Press (1985)Google Scholar
  8. 8.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988), http://theory.lcs.mit.edu/~rivest/GoldwasserMicaliRivest-ADigitalSignatureSchemeSecureAgainstAdaptiveChosenMessageAttacks.ps MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    van de Graaf, J.: Towards a formal definition of security for quantum protocols. Ph.D. thesis, Départment d’informatique et de r.o., Université de Montréal (1998), http://www.cs.mcgill.ca/~crepeau/PS/these-jeroen.ps
  10. 10.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC, pp. 212–219 (1996)Google Scholar
  11. 11.
    Halevi, S., Micali, S.: More on proofs of knowledge. IACR ePrint 1998/015 (1998)Google Scholar
  12. 12.
    Hallgren, S., Smith, A., Song, F.: Classical Cryptographic Protocols in a Quantum World. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 411–428. Springer, Heidelberg (2011)Google Scholar
  13. 13.
    Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 30(1), 175–193 (1906) (in French)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Lunemann, C., Nielsen, J.B.: Fully Simulatable Quantum-Secure Coin-Flipping and Applications. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 21–40. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)Google Scholar
  16. 16.
    Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, FOCS 1994, pp. 124–134. IEEE Computer Society (1994)Google Scholar
  17. 17.
    Unruh, D.: Universally Composable Quantum Multi-party Computation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg (2010) preprint on arXiv:0910.2912 [quant-ph] CrossRefGoogle Scholar
  18. 18.
    Unruh, D.: Quantum proofs of knowledge. IACR ePrint 2010/212 (2012), full versionGoogle Scholar
  19. 19.
    Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1), 25–58 (2009)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Winter, A.: Coding Theorems of Quantum Information Theory, Ph.D. thesis, Universität Bielefeld (1999), arXiv:quant-ph/9907077v1Google Scholar
  21. 21.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Dominique Unruh
    • 1
  1. 1.University of TartuEstonia

Personalised recommendations