We motivate, define and construct quantum proofs of knowledge, proofs of knowledge secure against quantum adversaries. Our constructions are based on a new quantum rewinding technique that allows us to extract witnesses in many classical proofs of knowledge. We give criteria under which a classical proof of knowledge is a quantum proof of knowledge. Combining our results with Watrous’ results on quantum zero-knowledge, we show that there are zero-knowledge quantum proofs of knowledge for all languages in NP (assuming quantum 1-1 one-way functions).


  1. 1.
    Aaronson, S.: Limitations of quantum advice and one-way communication. Theory of Computing 1(1), 1–28 (2005), http://www.theoryofcomputing.org/articles/v001a001 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Adcock, M., Cleve, R.: A Quantum Goldreich-Levin Theorem with Cryptographic Applications. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 323–334. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993), http://www-cse.ucsd.edu/users/mihir/papers/pok.ps Google Scholar
  4. 4.
    Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the International Congress of Mathematicians, Berkeley, pp. 1444–1451 (1986)Google Scholar
  5. 5.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game – or – a completeness theorem for protocols with honest majority. In: STOC 1987, pp. 218–229 (1987)Google Scholar
  6. 6.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM 38(3), 690–728 (1991), http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf MathSciNetCrossRefGoogle Scholar
  7. 7.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pp. 291–304. ACM Press (1985)Google Scholar
  8. 8.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308 (1988), http://theory.lcs.mit.edu/~rivest/GoldwasserMicaliRivest-ADigitalSignatureSchemeSecureAgainstAdaptiveChosenMessageAttacks.ps MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    van de Graaf, J.: Towards a formal definition of security for quantum protocols. Ph.D. thesis, Départment d’informatique et de r.o., Université de Montréal (1998), http://www.cs.mcgill.ca/~crepeau/PS/these-jeroen.ps
  10. 10.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC, pp. 212–219 (1996)Google Scholar
  11. 11.
    Halevi, S., Micali, S.: More on proofs of knowledge. IACR ePrint 1998/015 (1998)Google Scholar
  12. 12.
    Hallgren, S., Smith, A., Song, F.: Classical Cryptographic Protocols in a Quantum World. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 411–428. Springer, Heidelberg (2011)Google Scholar
  13. 13.
    Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica 30(1), 175–193 (1906) (in French)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Lunemann, C., Nielsen, J.B.: Fully Simulatable Quantum-Secure Coin-Flipping and Applications. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 21–40. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)Google Scholar
  16. 16.
    Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, FOCS 1994, pp. 124–134. IEEE Computer Society (1994)Google Scholar
  17. 17.
    Unruh, D.: Universally Composable Quantum Multi-party Computation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg (2010) preprint on arXiv:0910.2912 [quant-ph] CrossRefGoogle Scholar
  18. 18.
    Unruh, D.: Quantum proofs of knowledge. IACR ePrint 2010/212 (2012), full versionGoogle Scholar
  19. 19.
    Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1), 25–58 (2009)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Winter, A.: Coding Theorems of Quantum Information Theory, Ph.D. thesis, Universität Bielefeld (1999), arXiv:quant-ph/9907077v1Google Scholar
  21. 21.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2012

Authors and Affiliations

  • Dominique Unruh
    • 1
  1. 1.University of TartuEstonia

Personalised recommendations