Using a Medical Thesaurus to Predict Query Difficulty

  • Florian Boudin
  • Jian-Yun Nie
  • Martin Dawes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7224)

Abstract

Estimating query performance is the task of predicting the quality of results returned by a search engine in response to a query. In this paper, we focus on pre-retrieval prediction methods for the medical domain. We propose a novel predictor that exploits a thesaurus to ascertain how difficult queries are. In our experiments, we show that our predictor outperforms the state-of-the-art methods that do not use a thesaurus.

Keywords

Retrieval Model Query Term Mean Average Precision Query Performance Medical Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boudin, F., Nie, J.-Y., Dawes, M.: Positional Language Models for Clinical Information Retrieval. In: Proceedings of the EMNLP Conference (2010)Google Scholar
  2. 2.
    Carmel, D., Yom-Tov, E., Darlow, A., Pelleg, D.: What makes a query difficult? In: Proceedings of the SIGIR Conference (2006)Google Scholar
  3. 3.
    Cronen-Townsend, S., Zhou, Y., Croft, W.B.: Predicting query performance. In: Proceedings of the SIGIR Conference (2002)Google Scholar
  4. 4.
    He, B., Ounis, I.: Query performance prediction. Information Systems (2006)Google Scholar
  5. 5.
    Scholer, F., Williams, H.E., Turpin, A.: Query association surrogates for web search. JASIST (2004)Google Scholar
  6. 6.
    Voorhees, E.M.: Overview of the TREC 2004 robust retrieval track. In: Proceedings of the TREC Conference (2004)Google Scholar
  7. 7.
    Zhao, Y., Scholer, F., Tsegay, Y.: Effective Pre-retrieval Query Performance Prediction using Similarity and Variability Evidence. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 52–64. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Florian Boudin
    • 1
  • Jian-Yun Nie
    • 2
  • Martin Dawes
    • 3
  1. 1.Université de NantesFrance
  2. 2.Université de MontréalCanada
  3. 3.University of British ColumbiaCanada

Personalised recommendations