A Framework for Unsupervised Spam Detection in Social Networking Sites

  • Maarten Bosma
  • Edgar Meij
  • Wouter Weerkamp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7224)

Abstract

Social networking sites offer users the option to submit user spam reports for a given message, indicating this message is inappropriate. In this paper we present a framework that uses these user spam reports for spam detection. The framework is based on the HITS web link analysis framework and is instantiated in three models. The models subsequently introduce propagation between messages reported by the same user, messages authored by the same user, and messages with similar content. Each of the models can also be converted to a simple semi-supervised scheme. We test our models on data from a popular social network and compare the models to two baselines, based on message content and raw report counts. We find that our models outperform both baselines and that each of the additions (reporters, authors, and similar messages) further improves the performance of the framework.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benevenuto, F., Rodrigues, T., Almeida, V., Almeida, J., Zhang, C., Ross, K.: Identifying video spammers in online social networks. In: Proceedings of the 4th International Workshop on Adversarial Information Retrieval on the Web, pp. 45–52. ACM (2008)Google Scholar
  2. 2.
    Bian, J., Liu, Y., Zhou, D., Agichtein, E., Zha, H.: Learning to recognize reliable users and content in social media with coupled mutual reinforcement. In: Proceedings of the 18th International Conference on World Wide Web, pp. 51–60. ACM (2009)Google Scholar
  3. 3.
    Campbell, C.S., Maglio, P.P., Cozzi, A., Dom, B.: Expertise identification using email communications. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, pp. 528–531. ACM (2003)Google Scholar
  4. 4.
    DeBarr, D., Wechsler, H.: Using Social Network Analysis for Spam Detection. In: Chai, S.-K., Salerno, J.J., Mabry, P.L. (eds.) SBP 2010. LNCS, vol. 6007, pp. 62–69. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Dom, B., Eiron, I., Cozzi, A., Zhang, Y.: Graph-based ranking algorithms for e-mail expertise analysis. In: Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 42–48. ACM (2003)Google Scholar
  6. 6.
    Fawcett, T.: An introduction to roc analysis. Pattern Recognition Letters 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ghiossi, C.: The facebook blog: Explaining facebook’s spam prevention systems (2010), http://blog.facebook.com/blog.php?post=403200567130 (accessed May 12, 2011)
  8. 8.
    Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust. In: Proceedings of the 13th International Conference on World Wide Web, pp. 403–412. ACM (2004)Google Scholar
  9. 9.
    Irani, D., Webb, S., Pu, C.: Study of static classification of social spam profiles in myspace. In: Proceedings of the 4th International Conference on Weblogs and Social Media (2010)Google Scholar
  10. 10.
    Jurczyk, P., Agichtein, E.: Discovering authorities in question answer communities by using link analysis. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, pp. 919–922. ACM (2007)Google Scholar
  11. 11.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM) 46(5), 604–632 (1999)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Lee, K., Caverlee, J., Webb, S.: Uncovering social spammers: social honeypots+ machine learning. In: Proceeding of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 435–442. ACM (2010)Google Scholar
  13. 13.
    Lu, Y., Tsaparas, P., Ntoulas, A., Polanyi, L.: Exploiting social context for review quality prediction. In: Proceedings of the 19th International Conference on World Wide Web, pp. 691–700. ACM (2010)Google Scholar
  14. 14.
    Mehta, B., Hofmann, T., Fankhauser, P.: Lies and propaganda: detecting spam users in collaborative filtering. In: Proceedings of the 12th International Conference on Intelligent User Interfaces, pp. 14–21. ACM (2007)Google Scholar
  15. 15.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. In: Stanford InfoLab. Citeseer (1999)Google Scholar
  16. 16.
    Wang, A.H.: Don’t follow me: Spam detection in twitter. In: Proceedings of the 2010 International Conference on Security and Cryptography (SECRYPT), pp. 1–10. IEEE (2010)Google Scholar
  17. 17.
    Zhang, J., Tang, J., Li, J.: Expert Finding in a Social Network. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 1066–1069. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Ziegler, C.N., Lausen, G.: Spreading activation models for trust propagation. In: IEEE International Conference on e-Technology, e-Commerce and e-Service, EEE 2004, pp. 83–97. IEEE (2004)Google Scholar
  19. 19.
    Zinman, A., Donath, J.: Is britney spears spam. In: Fourth Conference on Email and Anti-Spam, Mountain View. Citeseer, CA (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maarten Bosma
    • 1
  • Edgar Meij
    • 1
  • Wouter Weerkamp
    • 1
  1. 1.ISLAUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations