A Dimensionless Analysis of the Effect of Material and Surface Properties on Adhesion. Applications to Medical Device Design

  • Polina ProkopovichEmail author
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 139)


Prediction of adhesion is of great significance in the development of micro-electromechanical systems and medical devices to achieve reliable and cost-effective design. For this purpose, knowledge of material and surface properties and their role on adhesion is crucial. This paper employs a multi-asperity adhesion model providing a greater understanding factors influencing on phenomena of adhesion and this novel method can be used as a tool for effective design of materials and their contact in various devices.

A dimensionless analysis, employing the π theorem, is presented based on the multi-asperity JKR adhesion model. The role of surface topography, material properties and the effect of asperity height distribution and its asymmetry on force of adhesion has been shown using dimensionless parameters. The application of the developed methodology is demonstrated through a case study on catheter design.


Contact Force Adhesion Force Plasticity Index Total Surface Energy Asperity Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prokopovich P, Theodossiades S, Rahnejat H, Hodson D (2010) Wear 268:845–852CrossRefGoogle Scholar
  2. 2.
    Prokopovich P, Perni S (2010) Acta Biomat 6:4052–4059Google Scholar
  3. 3.
    Prokopovich P, Starov V (2011) Advances in colloid and interface science. 168(1–2):210–222Google Scholar
  4. 4.
    Maboudian R, Howe RT (1957) J Vac Sci Technol B 15:1–20CrossRefGoogle Scholar
  5. 5.
    Bhushan B, Nosonovsky M (2004) Acta Mater 52:2461–2472CrossRefGoogle Scholar
  6. 6.
    Wu L, Rochus V, Noels L, Golinval JC (2009) J Appl Phys 106:113502-1–113502-10Google Scholar
  7. 7.
    Scheu C, Gao M, Oh SH, Dehm G, Klein S, Tomsia AP, Rühle M (2006) J Mater Sci 41:5161–5168CrossRefGoogle Scholar
  8. 8.
    Johnson KL, Kendall K, Roberts AD (1971) Proc Roy Soc A 324(1558):301–313CrossRefGoogle Scholar
  9. 9.
    Derjaguin KL, Muller VM, Toporov YP (1975) J Colloid Interface Sci 53(2):314–326CrossRefGoogle Scholar
  10. 10.
    Maugis D (1992) J Colloid Interface Sci 150:243–269CrossRefGoogle Scholar
  11. 11.
    Maugis D (1999) Contact, adhesion and rupture of elastic solids. Springer, New YorkGoogle Scholar
  12. 12.
    Cooper K, Ohler N, Gupta A, Beaudoin S (2000) J Colloid Interface Sci 222:63–74CrossRefGoogle Scholar
  13. 13.
    Cooper K, Gupta A, Beaudoin S (2001) J Colloid Interface Sci 234:284–292CrossRefGoogle Scholar
  14. 14.
    Eichenlaub S, Gelb A, Beaudoin S (2004) J Colloid Interface Sci 280:289–298CrossRefGoogle Scholar
  15. 15.
    Greenwood JA, Williamson JBP (1966) Proc Roy Soc Lond A 295:300–319CrossRefGoogle Scholar
  16. 16.
    McCool JI (1986) Wear 107:37–60CrossRefGoogle Scholar
  17. 17.
    Francis HA (1977) Wear 45:221–269CrossRefGoogle Scholar
  18. 18.
    Greenwood JA, Tripp JH (1971) Proc Inst Mech Eng 185:625–633Google Scholar
  19. 19.
    Zhuravlev VA (1940) Zh Tekh Fiz 10(17):1447–1452Google Scholar
  20. 20.
    Whitehouse DJ (1994) Handbook of surface metrology. Institute of Physics, BristolGoogle Scholar
  21. 21.
    Yu N, Polycarpou AA (2002) ASME J Tribol 124:367–376CrossRefGoogle Scholar
  22. 22.
    Yu N, Polycarpou AA (2004) ASME J Tribol 126:225–232CrossRefGoogle Scholar
  23. 23.
    Stout KJ, Davis EJ, Sullivan PJ (1990) Atlas of machined surfaces. Chapman and Hall, LondonCrossRefGoogle Scholar
  24. 24.
    Bhushan B (1999) Handbook of micro/nanotribology. CRC Press, Boca RatonGoogle Scholar
  25. 25.
    Prokopovich P, Perni S (2010) Langmuir 26(22):17028–17036CrossRefGoogle Scholar
  26. 26.
    Prokopovich P, Perni S (2011) Colloid Surf A 383(1–3):95–101CrossRefGoogle Scholar
  27. 27.
    Borodich FM, Galanov BA (2008) Proc Roy Soc A 464:2759–2776CrossRefGoogle Scholar
  28. 28.
    Misic T, Najdanovic-Lukin M, Nesic L (2010) Eur J Phys 31:893–906CrossRefGoogle Scholar
  29. 29.
    White FM (1998) Fluid mechanics, 4th edn. McGraw Hill, New YorkGoogle Scholar
  30. 30.
    Sahoo P, Banerjee A (2005) J Phys D: Appl Phys 38:4096–4103CrossRefGoogle Scholar
  31. 31.
    Patra S, Ali SM, Sahoo P (2008) Wear 265:554–559CrossRefGoogle Scholar
  32. 32.
    Komvopoulos K (1996) Wear 200:305–327CrossRefGoogle Scholar
  33. 33.
    Perni S, Prokopovich P, Piccirillo C, Pratten JR, Parkin IP, Wilson M (2009) J Mater Chem 19(17):2715–2723CrossRefGoogle Scholar
  34. 34.
    Reedy ED, Starr MJ Jr, Jones RE, Flater EE, Carpick RW (2005) Proceedings of the 28th annual meeting adhesion society meeting, MobileGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Welsh School of PharmacyCardiff UniversityCardiffUK
  2. 2.Institute of Medical Engineering and Medical Physics, School of EngineeringCardiff UniversityCardiffUK

Personalised recommendations