Adaptive Minimum Entropy Beamforming Algorithms for Narrowband Signals

  • Anum Ali
  • Shafayat Abrar
Part of the Communications in Computer and Information Science book series (CCIS, volume 281)


Blind beamforming has been studied extensively in recent times. Array signal processing is an effective technique for signal extraction in communication systems. We employ minimum entropy deconvolution (MED) principle for source extraction. Results are shown which indicate good performance in comparison with conventional adaptive algorithms like the constant modulus algorithm and the multi-modulus algorithm.


Minimum entropy deconvolution constant modulus algorithm multi modulus algorithm narrowband adaptive beamforming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Godard, D.N.: Self-recovering equalization and carrier tracking in two-dimensional data communications systems. IEEE Trans. Commun. 28(11), 1867–1875 (1980)CrossRefGoogle Scholar
  2. 2.
    Treichler, J.R., Agee, B.G.: A new approach to multipath correction of constant modulus signals. IEEE Trans. Acoust. Speech Signal Processing 31(2), 459–471 (1983)CrossRefGoogle Scholar
  3. 3.
    Wiggins, R.A.: Minimum entropy deconvolution. In: Proc. Int. Symp. Computer Aided Seismic Analysis and Discrimination (1977)Google Scholar
  4. 4.
    Wiggins, R.A.: Minimum entropy deconvolution. Geoexploration 16, 21–35 (1978)CrossRefGoogle Scholar
  5. 5.
    Walden, A.T.: Non-Gaussian reflectivity, entropy, and deconvolution. Geophysics 50(12), 2862–2888 (1985)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gray, W.: Variable Norm Deconvolution. PhD thesis, Stanford Univ. (1979)Google Scholar
  7. 7.
    Donoho, D.: On minimum entropy deconvolution. In: Proc. 2nd Applied Time Series Symp., pp. 565–608 (March 1980)Google Scholar
  8. 8.
    Ooe, M., Ulrych, T.J.: Minimum entropy deconvolution with an exponential transformation. Geophysical Prospecting 27, 458–473 (1979)CrossRefGoogle Scholar
  9. 9.
    Claerbout, J.F.: Parsimonious deconvolution (September 13, 1977)Google Scholar
  10. 10.
    Gray, W.: Variable norm deconvolution (September 14,1978)Google Scholar
  11. 11.
    Gray, W.: A theory for variable norm deconvolution (September 15, 1979)Google Scholar
  12. 12.
    Sidak, Z., Sen, P.K., Hajek, J.: Theory of Rank Tests, 2nd edn. Academic Press (1999)Google Scholar
  13. 13.
    Abrar, S., Nandi, A.K.: Adaptive minimum entropy equalization algorithm. IEEE Commun. Lett. 14(10), 966–968 (2010)CrossRefGoogle Scholar
  14. 14.
    Abrar, S., Nandi, A.K.: Adaptive solution for blind equalization and carrier-phase recovery of square-QAM. IEEE Sig. Processing Lett. 17(9), 791–794 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anum Ali
    • 1
  • Shafayat Abrar
    • 1
  1. 1.Department of Electrical EngineeringCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations