Advertisement

Application of Genetic Algorithms to Optimize a Truncated Mean k-Nearest Neighbours Regressor for Hotel Reservation Forecasting

  • Andrés Sanz-García
  • Julio Fernández-Ceniceros
  • Fernando Antoñanzas-Torres
  • F. Javier Martínez-de-Pisón-Ascacibar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7208)

Abstract

Progress in information technologies and their broad social expansion have led to the appearance of websites specialized in online hotel booking. These sites offer new approaches for customers that have demonstrated a strong tendency towards making last minute reservations. This scenario has dramatically affected the task of predicting hotel bookings, making these estimations is now much more complex using the traditional forecasting models. Given the importance of this estimation, it is crucial to find more accurate prediction models that take into account these new situations. This work aims to develop an application to predict hotel room reservations that tackles the consequences of last-minute reservations. Our proposal combines genetic algorithms optimization and truncated mean k-nearest neighbours regressor. After the analysis, we conclude that our method shows a significant improvement regarding working with historical booking information when compared with classical models. Therefore, the results of the study illustrate that our application will enable the development of useful prediction demand calendars.

Keywords

Genetic Algorithm Optimization k-Nearest Neighbours Hotel Booking Forecasting Decision Support System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aha, D.W., Kibler, D.: Instance-based learning algorithms. Machine Learning, 37–66 (1991)Google Scholar
  2. 2.
    Cantoni, L., Fans, M., Inversini, A., Passini, V.: Hotel websites and booking engines: A challenging relationship. In: Law, R., Fuchs, M., Ricci, F. (eds.) Information and Communication Technologies in Tourism 2011 (Proceedings of the Int. Conf. in Innsbruck, Austria), pp. 241–252. Springer, Heidelberg (2011)Google Scholar
  3. 3.
    Corchado, E., Abraham, A., Carvalho, A.: Hybrid intelligent algorithms and applications. Information Sciences 180(14), 2633–2634 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Corchado, E., Graña, M., Wozniak, M.: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)CrossRefGoogle Scholar
  5. 5.
    Corchado, E., Herrero, A.: Neural visualization of network traffic data for intrusion detection. Applied Soft Computing (2010)Google Scholar
  6. 6.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13, 21–27 (1967)zbMATHCrossRefGoogle Scholar
  7. 7.
    Deza, E., Deza, M.M.: Encyclopedia of distances, pp. 1–583. Springer, Heidelberg (2009)zbMATHCrossRefGoogle Scholar
  8. 8.
    Haensel, A., Koole, G.: Booking horizon forecasting with dynamic updating: A case study of hotel reservation data. International Journal of Forecasting 27, 942–960 (2011)CrossRefGoogle Scholar
  9. 9.
    Haykin, S.: Neural networks: a comprehensive foundation. Prentice Hall (1999)Google Scholar
  10. 10.
    Liu, W., Chawla, S.: A quadratic mean based supervised learning model for managing data skewness. In: SDM, pp. 188–198. SIAM/Omnipress (2011)Google Scholar
  11. 11.
    Mitchell, M.: An introduction to genetic algorithms. The MIT Press (1998)Google Scholar
  12. 12.
    Portnoy, S., Koenker, R.: The gaussian hare and the laplacian tortoise: Computability of squared- error versus absolute-error estimators. Statistical Science 12, 279–296 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Pölt, S.: Forecasting is difficult - especially if it refers to the future. In: AGIFORS - Reservations and Yield Management Study Group Meeting Proceedings (1998)Google Scholar
  14. 14.
    Quinlan, J.R.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, pp. 343–348 (1992)Google Scholar
  15. 15.
    Rajopadhye, M., Ben-Ghalia, M., Wang, P.P., Baker, T., Eister, C.V.: Forecasting uncertain hotel room demand. Information Science 132, 1–11 (2001)CrossRefGoogle Scholar
  16. 16.
    Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.: A soft computing method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering 17(2), 103–115 (2010)Google Scholar
  17. 17.
    Sparks, B.A., Browning, V.: The impact of online reviews on hotel booking intentions and perception of trust. Tourism Management (2011)Google Scholar
  18. 18.
    Weatherford, L.R., Kimes, S.E.: A comparison of forecasting methods for hotel revenue management. International Journal of Forecasting 19, 401–415 (2003)CrossRefGoogle Scholar
  19. 19.
    Weinberg, J., Brown, L.D., Stroud, J.R.: Bayesian forecasting of an inhomogeneous poisson process with applications to call center data. Journal of the American Statistical Association 102(480), 1185–1198 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Wilkinson, G.N., Rogers, C.E.: Symbolic description of factorial models for analysis of variance. Journal of the Royal Statistical Society. Series C (Applied Statistics) 22, 392–399 (1973)Google Scholar
  21. 21.
    Zakhary, A., Atiya, A.F., El-Shishiny, H., Gayar, N.E.: Forecasting hotel arrivals and occupancy using monte carlo simulation. Journal of Revenue and Pricing Management 42, 1–11 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrés Sanz-García
    • 1
  • Julio Fernández-Ceniceros
    • 1
  • Fernando Antoñanzas-Torres
    • 1
  • F. Javier Martínez-de-Pisón-Ascacibar
    • 1
  1. 1.EDMANS Research GroupUniversity of La RiojaLogroñoSpain

Personalised recommendations