Research of Neural Network Classifier Based on FCM and PSO for Breast Cancer Classification

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7208)


Breast cancer is one of the most common tumors related to death in women in many countries. In this paper, a novel neural network classification model is developed. The proposed model uses floating centroids method and particle swarm optimization algorithm with inertia weight as optimizer to improve the performance of neural network classifier. Wisconsin breast cancer datasets in UCI Machine Learning Repository are tested with neural network classifier of the proposed method. Experimental results show that the developed model improves search convergence and performance. The accuracy of classification of benign and malignant tumors could be improved by the developed method compared with other classification techniques.


Floating Centroids Method PSO Neural Network Breast Cancer Classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hulka, B.S., Moorman, P.G.: Breast Cancer: Hormones and Other Risk Factors. Maturitas 38(1), 103–113 (2001)CrossRefGoogle Scholar
  2. 2.
    Corchado, E., Graña, M., Wozniak, M.: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)CrossRefGoogle Scholar
  3. 3.
    García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences 180(10), 2044–2064 (2010)CrossRefGoogle Scholar
  4. 4.
    Corchado, E., Abraham, A., Carvalho, A.: Hybrid intelligent algorithms and applications. Information Sciences 180(14), 2633–2634 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Pedrycz, W., Aliev, R.: Logic-oriented neural networks for fuzzy neurocomputing. Neurocomputing 73(1-3), 10–23 (2009)CrossRefGoogle Scholar
  6. 6.
    Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72(13-15), 2729–2730 (2009)CrossRefGoogle Scholar
  7. 7.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley (1989)Google Scholar
  8. 8.
    Platt, J., Cristianini, N., Shawe Taylor, J.: Large Margin DAGs for Multiclass Classification. In: Advances in Neural Information Processing Systems, pp. 547–553 (2000)Google Scholar
  9. 9.
    Lu, H., Rudy, S., Huan, L.: Effect data mining using neural networks. IEEE Transcation Knowledge Data Engineer. 8(6), 957–961 (1996)CrossRefGoogle Scholar
  10. 10.
    Misraa, B.B., Dehurib, S., Dashc, P.K., Pandad, G.: A reduced and comprehensible polynomial neural network for classification. Pattern Recognition 29(12), 1705–1712 (2008)CrossRefGoogle Scholar
  11. 11.
    Daqi, G., Yan, J.: Classification methodologies of multilayer perceptions with sigmoid activation functions. Pattern Recognition 38(10), 1469–1482 (2005)CrossRefGoogle Scholar
  12. 12.
    Chen, Y., Abraham, A., Yang, B.: Feature selection and classification using flexible neural tree. Neurocomputing 70(1-3), 305–313 (2006)CrossRefGoogle Scholar
  13. 13.
    Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)zbMATHGoogle Scholar
  14. 14.
    Chua, Y.S.: Efficient computations for large least square support vector machine classifiers. Pattern Recognition 24(1-3), 75–80 (2003)zbMATHCrossRefGoogle Scholar
  15. 15.
    Koknar-Tezel, S., Latecki, L.J.: Improving SVM classification on imbalanced time series data sets with ghost points. Knowledge and Information Systems 28(1), 1–23 (2011)CrossRefGoogle Scholar
  16. 16.
    Benjamin, X.W., Japkowicz, N.: Boosting support vector machines for imbalanced data sets. Knowledge and Information Systems 25(1), 1–20 (2011)Google Scholar
  17. 17.
    Qinlan, J.R.: Introduction of decision trees. Machine Learning 1(1), 81–106 (1986)Google Scholar
  18. 18.
    Wang, L., Yang, B., Chen, Y., Abraham, A., Sun, H., Chen, Z., Wang, H.: Improvement of Neural Network Classifier using Floating Centroids. Knowledge and Information Systems (2011), doi: 10.1007/s10115-011-0410-8Google Scholar
  19. 19.
    Freund, Y.: Boosting a weak learning algorithm by majority. Information Computing 121(2), 256–285 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. Applied Stat. 28(1), 100–108 (1979)zbMATHCrossRefGoogle Scholar
  21. 21.
    Eberhart, R.C., Shi, Y.: Particle Swarm Optimization: Developments, Applications and Resources. In: Proc. of the Congress on Evolutionary Computation, pp. 81–86 (2001)Google Scholar
  22. 22.
    Huang, C.-P., Xiong, W.-L., Xu, B.-G.: Influnce of Inertia Weight on Astringency of Particle Swarm Algorithm and Its Improvement. Computer Engineering 34(12), 31–33 (2008)Google Scholar
  23. 23.
    Yang, B., Wang, L., Chen, Z., Chen, Y., Sun, R.: A novel classification method using the combination of FDPS and flexible neural tree. Neurocomputing 73(4-6), 690–699 (2010)CrossRefGoogle Scholar
  24. 24.
    Blake, C.L., Merz, C.J., Newman, D.J., et al.: UCI Repository of Machine Learning Databases (2002),
  25. 25.
    Chen, Y., Abraham, A.: Hybrid Neurocomputing for Detection of Breast Cancer. In: The Fourth IEEE International Workshop on Soft Computing as Transdisciplinary Science and Technology (WSTST 2005), pp. 884–892 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Network Based Intelligent ComputingUniversity of JinanJinanChina
  2. 2.University of JinanJinanChina
  3. 3.Machine Intelligence Research Labs (MIR Labs)USA

Personalised recommendations