Reasoning with Qualitative Velocity: Towards a Hybrid Approach

  • J. Golińska-Pilarek
  • E. Muñoz-Velasco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7208)


Qualitative description of the movement of objects can be very important when there are large quantity of data or incomplete information, such as in positioning technologies and movement of robots. We present a first step in the combination of fuzzy qualitative reasoning and quantitative data obtained by human interaction and external devices as GPS, in order to update and correct the qualitative information. We consider a Propositional Dynamic Logic which deals with qualitative velocity and enables us to represent some reasoning tasks about qualitative properties. The use of logic provides a general framework which improves the capacity of reasoning. This way, we can infer additional information by using axioms and the logic apparatus. In this paper we present sound and complete relational dual tableau that can be used for verification of validity of formulas of the logic in question.


qualitative reasoning propositional dynamic logic relational logics hybrid qualitative reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72(13-15), 2729–2730 (2009)CrossRefGoogle Scholar
  2. 2.
    Bennett, B., Cohn, A., Wolter, A., Zakharyaschev, M.: Multi-dimensional modal logic as a framework for spatio-temporal reasoning. Applied Intelligence 17(3), 239–251 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Burrieza, A., Muñoz-Velasco, E., Ojeda-Aciego, M.: A PDL approach for qualitative velocity. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 19(01), 11–26 (2011)zbMATHCrossRefGoogle Scholar
  4. 4.
    Burrieza, A., Muñoz-Velasco, E., Ojeda-Aciego, M.: Closeness and Distance Relations in Order of Magnitude Qualitative Reasoning via PDL. In: Meseguer, P., Mandow, L., Gasca, R.M. (eds.) CAEPIA 2009. LNCS(LNAI), vol. 5988, pp. 71–80. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Burrieza, A., Ojeda-Aciego, M., Orłowska, E.: An implementation of a dual tableaux system for order-of-magnitude qualitative reasoning. International Journal of Computer Mathematics 86, 1852–1866 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cohn, A., Renz, J.: Handbook of Knowledge Representation. Elsevier (2007)Google Scholar
  7. 7.
    Corchado, E., Abraham, A., de Carvalho, A.: Editorial: Hybrid intelligent algorithms and applications. Information Science 180, 2633–2634 (2010)CrossRefGoogle Scholar
  8. 8.
    Corchado, E., Graña, M., Wozniak, M.: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)CrossRefGoogle Scholar
  9. 9.
    Delafontaine, M., Bogaert, P., Cohn, A.G., Witlox, F., Maeyer, P.D., de Weghe, N.V.: Inferring additional knowledge from QTC N relations. Information Sciences (2011), doi:10.1016/j.ins.2010.12.021Google Scholar
  10. 10.
    Duckham, M., Lingham, J., Mason, K., Worboys, M.: Qualitative reasoning about consistency in geographic information. Information Sciences 176(6), 601–627 (2006)CrossRefGoogle Scholar
  11. 11.
    Escrig, M.T., Toledo, F.: Qualitative Velocity. In: Escrig, M.T., Toledo, F.J., Golobardes, E. (eds.) CCIA 2002. LNCS (LNAI), vol. 2504, pp. 28–39. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Faltings, B.: A symbolic approach to qualitative kinematics. Artificial Intelligence 56(2-3), 139–170 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Forbus, K., Nielsen, P., Faltings, B.: Qualitative kinematics: A framework. In: Proceedings of the Int. Joint Conference on Artificial Intelligence, pp. 430–437 (1987)Google Scholar
  14. 14.
    García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences 180(10), 2044–2064 (2010)CrossRefGoogle Scholar
  15. 15.
    Golińska-Pilarek, J., Mora, A., Muñoz-Velasco, E.: An ATP of a Relational Proof System for Order of Magnitude Reasoning with Negligibility, Non-closeness and Distance. In: Ho, T.-B., Zhou, Z.-H. (eds.) PRICAI 2008. LNCS (LNAI), vol. 5351, pp. 128–139. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Golińska-Pilarek, J., Muñoz-Velasco, E.: Dual tableau for a multimodal logic for order of magnitude qualitative reasoning with bidirectional negligibility. International Journal of Computer Mathematics 86, 1707–1718 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Hinrichs, T., Forbus, K., de Kleer, J., Yoon, S., Jones, E., Hyland, R., Wilson, J.: Hybrid Qualitative Simulation of Military Operations. In: Proc. Twenty-Third IAAI Conf. (2011)Google Scholar
  18. 18.
    Liu, W., Li, S., Renz, J.: Combining RCC-8 with qualitative direction calculi: Algorithms and complexity. In: Proceedings of IJCAI 2009, pp. 854–859 (2009)Google Scholar
  19. 19.
    Liu, H., Brown, D.J., Coghill, G.M.: Fuzzy qualitative robot kinematics. IEEE Transactions on Fuzzy Systems 16(3), 808–822 (2008)CrossRefGoogle Scholar
  20. 20.
    Miene, A., Visser, U., Herzog, O.: Recognition and Prediction of Motion Situations Based on a Qualitative Motion Description. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 77–88. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Nielsen, P.: A qualitative approach to rigid body mechanics, University of Illinois at Urbana-Champaign, PhD thesis (1988)Google Scholar
  22. 22.
    Orłowska, E., Golińska-Pilarek, J.: Dual Tableaux: Foundations, Methodology, Case Studies. Trends in Logic, vol. 36. Springer Science (2011)Google Scholar
  23. 23.
    Pedrycz, W., Aliev, R.: Logic-oriented neural networks for fuzzy neurocomputing. Neurocomputing 73(1-3), 10–23 (2009)CrossRefGoogle Scholar
  24. 24.
    Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Proceedings of KR, pp. 165–176 (1992)Google Scholar
  25. 25.
    Rasiowa, H., Sikorski, R.: On gentzen theorem. Fund. Mathematicae 48, 57–69 (1960)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Roduit, P., Martinoli, A., Jacot, J.: A quantitative method for comparing trajectories of mobile robots using point distribution models. In: Proc. Intelligent Robots and Systems, IROS 2007, pp. 2441–2448 (2007)Google Scholar
  27. 27.
    Sokolsky, O., Hong, H.S.: Qualitative modeling of hybrid systems. In: Proc. of the Montreal Workshop (2001),
  28. 28.
    Stolzenburg, F., Obst, O., Murray, J.: Qualitative Velocity and Ball Interception. In: Jarke, M., Koehler, J., Lakemeyer, G. (eds.) KI 2002. LNCS (LNAI), vol. 2479, pp. 283–298. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73–89 (1941)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Van de Weghe, N., Kuijpers, B., Bogaert, P., De Maeyer, P.: A Qualitative Trajectory Calculus and the Composition of Its Relations. In: Rodríguez, M.A., Cruz, I., Levashkin, S., Egenhofer, M. (eds.) GeoS 2005. LNCS, vol. 3799, pp. 60–76. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Vries, D., Verheijen, P.J.T., den Dekker, A.J.: Hybrid system modeling and identification of cell biology systems: perspectives and challenges. In: Proc. 15th IFAC Symposium on System Identification, pp. 227–232 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • J. Golińska-Pilarek
    • 1
    • 2
  • E. Muñoz-Velasco
    • 3
  1. 1.Institute of PhilosophyUniversity of WarsawPoland
  2. 2.National Institute of TelecommunicationsUniversity of WarsawPoland
  3. 3.Dept. Applied MathematicsUniversity of MálagaSpain

Personalised recommendations