Advertisement

Modelling Stress Recognition in Conflict Resolution Scenarios

  • Marco Gomes
  • Davide Carneiro
  • Paulo Novais
  • José Neves
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7208)

Abstract

The current trend in Online Dispute Resolution focuses mostly on the development of technological tools that allow parties to solve conflicts through telecommunication means. However, this tendency leaves aside key issues, namely the context information that was previously available in traditional Alternative Dispute Resolution processes. The main weakness of this approach is that conflict resolution may become focused solely on objective issues. In order to overcome this inconvenience, we move forward to incorporate context and behavioural information in an Online Dispute Resolution platform. In particular, we consider the estimation of the level of stress and the prediction of the stress state evolution. As a result, the conflict resolution platform or the mediator may predict to what extent a party is affected by a particular matter, allowing one to adapt the conflict resolution strategy to a specific scenario in real time.

Keywords

Hybrid Artificial Intelligence Systems Online Dispute Resolution Stress Cognitive Activation Theory of Stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrade, F., Novais, P., Carneiro, D., Zeleznikow, J., Neves, J.: Using BATNAs and WATNAs in Online Dispute Resolution. In: Nakakoji, K., Murakami, Y., McCready, E. (eds.) JSAI-isAI 2009. LNCS, vol. 6284, pp. 5–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Antunes, L., Pinto, H.S. (eds.): EPIA 2011. LNCS, vol. 7026. Springer, Heidelberg (2011)Google Scholar
  3. 3.
    Bol, S.H.: Ethan katsh and janet rifkin, online dispute resolution, resolving conflicts in cyberspace. Artif. Intell. Law 11(1), 69–75 (2003)CrossRefGoogle Scholar
  4. 4.
    Bonarini, A., Mainardi, L., Matteucci, M., Tognetti, S., Colombo, R.: Stress recognition in a robotic rehabilitation task. In: Proceedings of the ACM/IEEE Human-Robot Interaction Conference (HRI 2008). Full-day Workshop on Robotic Helpers: User Interaction, Interfaces and Companions in Assistive and Therapy Robotics, pp. 41–48 (2008)Google Scholar
  5. 5.
    Carneiro, D., Gomes, M., Novais, P., Neves, J.: Automatic classification of personal conflict styles in conflict resolution. In: Winkels [26], pp. 43–52Google Scholar
  6. 6.
    Carneiro, D., Gomes, M., Novais, P., Neves, J.: Developing dynamic conflict resolution models based on the interpretation of personal conflict styles. In: Antunes, Pinto, (eds.) [2], pp. 44–58 (2011)Google Scholar
  7. 7.
    Carneiro, D., Novais, P., Neves, J.: Toward seamless environments for dispute prevention and resolution. In: Novais, (eds.) et al. [19], pp. 25–32Google Scholar
  8. 8.
    Charniak, E.: Bayesian networks without tears. AI Magazine 12(4), 50–63 (1991)Google Scholar
  9. 9.
    Corchado, E., Abraham, A., de Carvalho, A.C.P.L.F.: Hybrid intelligent algorithms and applications. Inf. Sci. 180(14), 2633–2634 (2010)CrossRefGoogle Scholar
  10. 10.
    Corchado, E., Graña, M., Wozniak, M.: New trends and applications on hybrid artificial intelligence systems. Neurocomputing 75(1), 61–63 (2012)CrossRefGoogle Scholar
  11. 11.
    Cox, R.: Sport psychology: concepts and applications. W.C. Brown (1985)Google Scholar
  12. 12.
    Eriksen, H.R., Olff, M., Murison, R., Ursin, H.: The time dimension in stress responses: relevance for survival and health. Psychiatry Res. 85(1), 39–50 (1999)CrossRefGoogle Scholar
  13. 13.
    Grundlehner, B., Brown, L., Penders, J., Gyselinckx, B.: The design and analysis of a real-time, continuous arousal monitor. In: International Workshop on Wearable and Implantable Body Sensor Networks, 156–161 (2009)Google Scholar
  14. 14.
    Gyselinckx, B., Vullers, R., Hoof, C.V., Ryckaert, J., Yazicioglu, R.F., Fiorini, P., Leonov, V.: Human++: Emerging technology for body area networks. In: 2006 IFIP International Conference on Very Large Scale Integration, pp. 175–180 (October 2006)Google Scholar
  15. 15.
    Healey, J., Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Transactions on Intelligent Transportation Systems 6(2), 156–166 (2005)CrossRefGoogle Scholar
  16. 16.
    Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn. Springer Publishing Company, Incorporated (2007) Google Scholar
  17. 17.
    Larson, D.A.: Technology mediated dispute resolution. In: Proceeding of the 2007 Conference on Legal Knowledge and Information Systems: JURIX 2007: The Twentieth Annual Conference, p. 5. IOS Press, Amsterdam (2007)Google Scholar
  18. 18.
    Liao, W., Zhang, W., Zhu, Z., Ji, Q., Gray, W.: Toward a decision-theoretic framework for affect recognition and user assistance. International Journal of Human-Computer Studies 64(9), 847–873 (2006)CrossRefGoogle Scholar
  19. 19.
    Novais, P., Preuveneers, D., Corchado, J.M. (eds.): Ambient Intelligence - Software and Applications - 2nd International Symposium on Ambient Intelligence, ISAmI 2011, Salamanca, Spain, April 6-8. Advances in Intelligent and Soft Computing, vol. 92. Springer, Heidelberg (2011)Google Scholar
  20. 20.
    Picard, R.W.: Affective computing. MIT Press, Cambridge (1997)Google Scholar
  21. 21.
    Selye, H.: The stress of life, vol. 5. McGraw-Hill paperbacks, McGraw-Hill (1956)Google Scholar
  22. 22.
    Shi, Y., Nguyen, M.H., Blitz, P., French, B., Fisk, S., De la Torre, F., Smailagic, A., Siewiorek, D.P., al’ Absi, M., Ertin, E., Kamarck, T., Kumar, S.: Personalized stress detection from physiological measurements. In: International Symposium on Quality of Life Technology (2010)Google Scholar
  23. 23.
    Thomas, K., Kilmann, R.: Conflict and conflict management (1974), http://www.kilmann.com/conflict.html
  24. 24.
    Tidd, T.S., Friedman, R.: Conflict style and coping with role conflict: An extension of the uncertainty model of work stress. International Journal of Conflict Management 13(3), 236–257 (2002)CrossRefGoogle Scholar
  25. 25.
    Ursin, H., Eriksen, H.R.: The cognitive activation theory of stress. Psychoneuroendocrinology 29(5), 567–592 (2004)CrossRefGoogle Scholar
  26. 26.
    Winkels, R. (ed.): Legal Knowledge and Information Systems - JURIX 2011: The Twenty-Third Annual Conference on Legal Knowledge and Information Systems, Vienna, AT, December 14-16. Frontiers in Artificial Intelligence and Applications, vol. 235. IOS Press (2011)Google Scholar
  27. 27.
    Wu, L., Oviatt, S.L., Cohen, P.R.: Multimodal integration - a statistical view. IEEE Transactions on Multimedia 1, 334–341 (1999)CrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Ji, Q.: Efficient sensor selection for active information fusion. Trans. Sys. Man Cyber. Part B 40, 719–728 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marco Gomes
    • 1
  • Davide Carneiro
    • 1
  • Paulo Novais
    • 1
  • José Neves
    • 1
  1. 1.Department of InformaticsUniversity of MinhoPortugal

Personalised recommendations