Cocaine Dependent Classification Using Brain Magnetic Resonance Imaging

  • M. Termenon
  • Manuel Graña
  • A. Barrós-Loscertales
  • J. C. Bustamante
  • C. Ávila
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7209)


The purpose of this study is to elucidate if it is possible to discriminate between cocaine dependent patients and healthy controls applying computer aided diagnosis tools to brain magnetic resonance imaging. Feature extraction was done computing Pearson’s correlation using subjects class as indicative variable. Linear support vector machines classifiers were trained and tested on the most significative voxels using leave one out cross-validation process. Results show that classifier achieve on average almost perfect accuracy, sensitivity and specificity in a group of 30 cocaine-dependent and 35 controls, supporting the usefulness of this process to discriminate between these subjects.


MRI Cocaine SVM 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Graña, M., Termenon, M., Savio, A., Gonzalez-Pinto, A., Echeveste, J., Pérez, J.M., Besga, A.: Computer aided diagnosis system for alzheimer disease using brain diffusion tensor imaging features selected by pearson’s correlation. Neuroscience Letters 502(3), 225–229 (2011) PMID: 21839143CrossRefGoogle Scholar
  2. 2.
    Savio, A., García-Sebastián, M., Chyzyk, D., Hernandez, C., Graña, M., Sistiaga, A., de Munain, A.L., Villanúa, J.: Neurocognitive disorder detection based on feature vectors extracted from VBM analysis of structural MRI. Computers in Biology and Medicine (2011)Google Scholar
  3. 3.
    Savio, A., Charpentier, J., Termenon, M., Shinn, A.K., Graña, M.: Neural classifiers for schizophrenia diagnostic support on diffusion imaging data. Neural Network World 20, 935–949 (2010)Google Scholar
  4. 4.
    Frangou, S.: CS02-02 - risk and resilience markers: Use of whole-brain structural MR scans to predict familial risk and disease expression in bipolar disorder. European Psychiatry 26(suppl.1) (2011)Google Scholar
  5. 5.
    Ernst, T., Chang, L., Oropilla, G., Gustavson, A., Speck, O.: Cerebral perfusion abnormalities in abstinent cocaine abusers: a perfusion MRI and SPECT study. Psychiatry Research: Neuroimaging 99(2), 63–74 (2000)CrossRefGoogle Scholar
  6. 6.
    Franklin, T.R., Acton, P.D., Maldjian, J.A., Gray, J.D., Croft, J.R., Dackis, C.A., O’Brien, C.P., Childress, A.R.: Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biological Psychiatry 51(2), 134–142 (2002) PMID: 11822992CrossRefGoogle Scholar
  7. 7.
    Barrós-Loscertales, A., Garavan, H., Bustamante, J.C., Ventura-Campos, N., Llopis, J.J., Belloch, V., Parcet, M.A., Ávila, C.: Reduced striatal volume in cocaine-dependent patients. NeuroImage 56(3), 1021–1026 (2011)CrossRefGoogle Scholar
  8. 8.
    Bustamante, J.C., Barrós-Loscertales, A., Ventura-Campos, N., Sanjún, A., Llopis, J.J., Parcet, M.A., Ávila, C.: Right parietal hypoactivation in a cocaine-dependent group during a verbal working memory task. Brain Research 1375, 111–119 (2011)CrossRefGoogle Scholar
  9. 9.
    Li, S., Biswal, B., Li, Z., Risinger, R., Rainey, C., Cho, J., Salmeron, B.J., Stein, E.A.: Cocaine administration decreases functional connectivity in human primary visual and motor cortex as detected by functional MRI. Magnetic Resonance in Medicine 43(1), 45–51 (2000)CrossRefGoogle Scholar
  10. 10.
    Moeller, F.G., Hasan, K.M., Steinberg, J.L., Kramer, L.A., Dougherty, D.M., Santos, R.M., Valdes, I., Swann, A.C., Barratt, E.S., Narayana, P.A.: Reduced anterior corpus callosum white matter integrity is related to increased impulsivity and reduced discriminability in Cocaine-Dependent subjects: Diffusion tensor imaging. Neuropsychopharmacology 30(3), 610–617 (2004)CrossRefGoogle Scholar
  11. 11.
    Lane, S.D., Steinberg, J.L., Ma, L., Hasan, K.M., Kramer, L.A., Zuniga, E.A., Narayana, P.A., Moeller, F.G.: Diffusion tensor imaging and decision making in cocaine dependence. PloS One 5(7), e11591 (2010) PMID: 20661285CrossRefGoogle Scholar
  12. 12.
    Lim, K.O., Wozniak, J.R., Mueller, B.A., Franc, D.T., Specker, S.M., Rodriguez, C.P., Silverman, A.B., Rotrosen, J.P.: Brain macrostructural and microstructural abnormalities in cocaine dependence. Drug and Alcohol Dependence 92(1-3), 164–172 (2008), PMID: 17904770 PMCID: 2693223CrossRefGoogle Scholar
  13. 13.
    Fan, Y., Rao, H., Hurt, H., Giannetta, J., Korczykowski, M., Shera, D., Avants, B.B., Gee, J.C., Wang, J., Shen, D.: Multivariate examination of brain abnormality using both structural and functional MRI. NeuroImage 36(4), 1189–1199 (2007) PMID: 17512218CrossRefGoogle Scholar
  14. 14.
    Honorio, J., Samaras, D., Tomasi, D., Goldstein, R.: Simple fully automated group classification on brain fMRI, pp. 1145–1148 (April 2010)Google Scholar
  15. 15.
    Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12(1), 26–41 (2008)CrossRefGoogle Scholar
  16. 16.
    Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience (September 1998)Google Scholar
  17. 17.
    Noble, W.S.: What is a support vector machine? Nat. Biotech. 24(12), 1565–1567 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Termenon
    • 1
  • Manuel Graña
    • 1
  • A. Barrós-Loscertales
    • 2
  • J. C. Bustamante
    • 2
  • C. Ávila
    • 2
  1. 1.Grupo de Inteligencia Computacional (GIC)UPV/EHUSpain
  2. 2.Dpto. Psicología Básica, Clínica y PsicobiologíaUniversitat Jaume ISpain

Personalised recommendations