Advertisement

Image Security and Biometrics: A Review

  • Ion Marqués
  • Manuel Graña
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7209)

Abstract

Imaging security and biometrics are two heavily connected areas. The quick evolution of biometrics has raised the need of securing biometric data. A majority of this data is visual, which has lead to intensive development of image security techniques for biometric applications. In this paper we give a fast fly over image security approaches and imaging-related biometrics. We present the current state-of-the-art of the interplay between both areas. The emphasis in this paper is the computational methods.

Keywords

Biometrics Imaging Security Watermarking Image Cryptography Steganography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petitcolas, F., Anderson, R., Kuhn, M.: Information hiding - a survey. Proceedings of the IEEE 87(7), 1062–1078 (1999)CrossRefGoogle Scholar
  2. 2.
    Yang, C.N., Chen, T.S.: Colored visual cryptography scheme based on additive color mixing. Pattern Recognition 41(10), 3114–3129 (2008)zbMATHCrossRefGoogle Scholar
  3. 3.
    Yang, C.N., Ciou, C.B.: Image secret sharing method with two-decoding-options: Lossless recovery and previewing capability. Image and Vision Computing 28(12), 1600–1610 (2010)CrossRefGoogle Scholar
  4. 4.
    Jin, J., Wu, Z.-H.: A secret image sharing based on neighborhood configurations of 2-d cellular automata. Optics & Laser Technology 10.1016/j.optlastec.2011.08.023(0) (2011)Google Scholar
  5. 5.
    Tremeau, A., Muselet, D.: Recent trends in color image watermarking. Journal of Imaging and Science Technology 53(1), 010201 (2009)CrossRefGoogle Scholar
  6. 6.
    Cox, I., Miller, M., Bloom, J.: Watermarking applications and their properties. In: Proceedings of International Conference on Information Technology: Coding and Computing, pp. 6–10 (2000)Google Scholar
  7. 7.
    Mahdian, B., Saic, S.: A bibliography on blind methods for identifying image forgery. Signal Processing-Image Communication 25(6), 389–399 (2010)CrossRefGoogle Scholar
  8. 8.
    Xu, D., Wang, R., Wang, J.: A novel watermarking scheme for h.264/avc video authentication. Signal Processing-Image Communication 26(6), 267–279 (2011)CrossRefGoogle Scholar
  9. 9.
    Kim, J., Kim, N., Lee, D., Park, S., Lee, S.: Watermarking two dimensional data object identifier for authenticated distribution of digital multimedia contents. Signal Processing-Image Communication 25(8), 559–576 (2010)CrossRefGoogle Scholar
  10. 10.
    Tsai, H.M., Chang, L.W.: Secure reversible visible image watermarking with authentication. Signal Processing-Image Communication 25(1), 10–17 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Vatsa, M., Singh, R., Noore, A.: Feature based rdwt watermarking for multimodal biometric system. Image and Vision Computing 27(3), 293–304 (2009)CrossRefGoogle Scholar
  12. 12.
    Wang, K., Lavoue, G., Denis, F., Baskurt, A.: A comprehensive survey on three-dimensional mesh watermarking. IEEE Transactions on Multimedia 10(8), 1513–1527 (2008)CrossRefGoogle Scholar
  13. 13.
    Darwish, A., Abraham, A.: The use of computational intelligence in digital watermarking: Review, challenges, and new trends. Neural Network World 21(4), 277–297 (2011)Google Scholar
  14. 14.
    Cancellaro, M., Battisti, F., Carli, M., Boato, G., Natale, F.D., Neri, A.: A commutative digital image watermarking and encryption method in the tree structured haar transform domain. Signal Processing: Image Communication 26(1), 1–12 (2011)CrossRefGoogle Scholar
  15. 15.
    Mostefa, I.B., Braci, S., Delpha, C., Boyer, R., Khamadja, M.: Quantized based image watermarking in an independent domain. Signal Processing-Image Communication 26(3), 194–204 (2011)CrossRefGoogle Scholar
  16. 16.
    Chen, W.C., Wang, M.S.: A fuzzy c-means clustering-based fragile watermarking scheme for image authentication. Expert Systems With Applications 36(2), 1300–1307 (2009)CrossRefGoogle Scholar
  17. 17.
    Huang, H.C., Chu, C.M., Pan, J.S.: The optimized copyright protection system with genetic watermarking. Soft Computing 13(4), 333–343 (2009); 2nd IEEE International Conference on Intelligent Information Hiding and Multimedia Signal Processing, CA (2006)Google Scholar
  18. 18.
    Deng, C., Gao, X., Li, X., Tao, D.: A local tchebichef moments-based robust image watermarking. Signal Processing 89(8), 1531–1539 (2009)zbMATHCrossRefGoogle Scholar
  19. 19.
    Chang, C.C., Chen, K.N., Lee, C.F., Liu, L.J.: A secure fragile watermarking scheme based on chaos-and-hamming code. Journal of Systems and Software 84(9), 1462–1470 (2011)CrossRefGoogle Scholar
  20. 20.
    Chang, C.C., Lin, P.Y.: Adaptive watermark mechanism for rightful ownership protection. Journal of Systems and Software 81(7), 1118–1129 (2008)CrossRefGoogle Scholar
  21. 21.
    Cintra, R.J., Dimitrov, V.S., de Oliveira, H.M., Campello de Souza, R.M.: Fragile watermarking using finite field trigonometrical transforms. Signal Processing-Image Communication 24(7), 587–597 (2009)CrossRefGoogle Scholar
  22. 22.
    Zhang, X., Wang, S.: Fragile watermarking scheme using a hierarchical mechanism. Signal Processing 89(4), 675–679 (2009)zbMATHCrossRefGoogle Scholar
  23. 23.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory 22, 644–654 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Hwang, H.-E.: An optical image cryptosystem based on hartley transform in the fresnel transform domain. Optics Communications 284(13), 3243–3247 (2011)CrossRefGoogle Scholar
  25. 25.
    Zhou, N., Wang, Y., Wu, J.: Image encryption algorithm based on the multi-order discrete fractional mellin transform. Optics Communications 284(24), 5588–5597 (2011)CrossRefGoogle Scholar
  26. 26.
    Zhong, Z., Chang, J., Shan, M., Hao, B.: Fractional fourier-domain random encoding and pixel scrambling technique for double image encryption. Optics Communications 285(1), 18–23 (2012)CrossRefGoogle Scholar
  27. 27.
    Lin, Q.H., Yin, F.L., Mei, T.M., Liang, H.: A blind source separation-based method for multiple images encryption. Image and Vision Computing 26(6), 788–798 (2008)CrossRefGoogle Scholar
  28. 28.
    Ulutas, M., Ulutas, G., Nabiyev, V.V.: Medical image security and epr hiding using shamir’s secret sharing scheme. Journal of Systems and Software 84(3), 341–353 (2011)CrossRefGoogle Scholar
  29. 29.
    Cheddad, A., Condell, J., Curran, K., Kevitt, P.M.: Digital image steganography: Survey and analysis of current methods. Signal Processing 90(3), 727–752 (2010)zbMATHCrossRefGoogle Scholar
  30. 30.
    Kim, K.S., Lee, M.J., Lee, H.Y., Lee, H.K.: Reversible data hiding exploiting spatial correlation between sub-sampled images. Pattern Recognition 42(11), 3083–3096 (2009)zbMATHCrossRefGoogle Scholar
  31. 31.
    Tai, W.L., Yeh, C.M., Chang, C.C.: Reversible data hiding based on histogram modification of pixel differences. IEEE Transactions on Circuits and Systems for Video Technology 19(6), 904–908 (2009)Google Scholar
  32. 32.
    Braci, S., Delpha, C., Boyer, R.: How quantization based schemes can be used in image steganographic context. Signal Processing-Image Communication 26(8-9), 567–576 (2011)CrossRefGoogle Scholar
  33. 33.
    Tseng, H.W., Hsieh, C.P.: Prediction-based reversible data hiding. Information Sciences 179(14), 2460–2469 (2009)zbMATHCrossRefGoogle Scholar
  34. 34.
    Qi, M., Lu, Y., Du, N., Zhang, Y., Wang, C., Kong, J.: A novel image hiding approach based on correlation analysis for secure multimodal biometrics. Journal of Network and Computer Applications 33(3), 247–257 (2010)CrossRefGoogle Scholar
  35. 35.
    Chang, C.C., Lee, J.S., Le, T.H.N.: Hybrid wet paper coding mechanism for steganography employing n-indicator and fuzzy edge detector. Digital Signal Processing 20(4), 1286–1307 (2010)CrossRefGoogle Scholar
  36. 36.
    Wu, C.C., Kao, S.J., Hwang, M.S.: A high quality image sharing with steganography and adaptive authentication scheme. Journal of Systems and Software 84(12), 2196–2207 (2011)CrossRefGoogle Scholar
  37. 37.
    Zhao, H., Wang, H., Khan, M.K.: Steganalysis for palette-based images using generalized difference image and color correlogram. Signal Processing 91(11), 2595–2605 (2011)CrossRefGoogle Scholar
  38. 38.
    Chao, M.W., Lin, C.H., Yu, C.W., Lee, T.Y.: A high capacity 3d steganography algorithm. IEEE Transactions on Visualization and Computer Graphics 15(2), 274–284 (2009)CrossRefGoogle Scholar
  39. 39.
    Amat, P., Puech, W., Druon, S., Pedeboy, J.P.: Lossless 3d steganography based on mst and connectivity modification. Signal Processing-Image Communication 25(6), 400–412 (2010)CrossRefGoogle Scholar
  40. 40.
    Elsheh, E., Hamza, A.B.: Secret sharing approaches for 3d object encryption. Expert Systems with Applications 38(11), 13906–13911 (2011)Google Scholar
  41. 41.
    Schouten, B., Jacobs, B.: Biometrics and their use in e-passports. Image and Vision Computing 27(3), 305–312 (2009)CrossRefGoogle Scholar
  42. 42.
    Jain, A., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 4–20 (2004)CrossRefGoogle Scholar
  43. 43.
    Biometric technology today, vol. 2011 (2011)Google Scholar
  44. 44.
    Chellappa, R., Sinha, P., Phillips, P.J.: Face recognition by computers and humans. IEEE Computer 43(2), 46–55 (2010)CrossRefGoogle Scholar
  45. 45.
    Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: A comprehensive study. Image and Vision Computing 27(6), 803–816 (2009)CrossRefGoogle Scholar
  46. 46.
    Gui, J., Jia, W., Zhu, L., Wang, S.L., Huang, D.S.: Locality preserving discriminant projections for face and palmprint recognition. Neurocomputing 73(13-15), 2696–2707 (2010)CrossRefGoogle Scholar
  47. 47.
    Wan, M., Lai, Z., Shao, J., Jin, Z.: Two-dimensional local graph embedding discriminant analysis (2dlgeda) with its application to face and palm biometrics. Neurocomputing 73(1-3), 197–203 (2009)CrossRefGoogle Scholar
  48. 48.
    Marques, I., Graña, M.: Face recognition with lattice independent component analysis and extreme learning machines. Soft Computing (in press)Google Scholar
  49. 49.
    Qiao, L., Chen, S., Tan, X.: Sparsity preserving projections with applications to face recognition. Pattern Recognition 43(1), 331–341 (2010)zbMATHCrossRefGoogle Scholar
  50. 50.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(2), 210–227 (2009)CrossRefGoogle Scholar
  51. 51.
    Zhang, T., Fang, B., Yuan, Y., Tang, Y.Y., Shang, Z., Li, D., Lang, F.: Multiscale facial structure representation for face recognition under varying illumination. Pattern Recognition 42(2), 251–258 (2009)zbMATHCrossRefGoogle Scholar
  52. 52.
    Marcialis, G.L., Roli, F., Muntoni, D.: Group-specific face verification using soft biometrics. Journal of Visual Languages and Computing 20(2), 101–109 (2009)CrossRefGoogle Scholar
  53. 53.
    Hollingsworth, K., Bowyer, K.W., Flynn, P.J.: Useful features for human verification in near-infrared periocular images. Image and Vision Computing 10.1016/j.imavis.2011.09.002(0) (2011)Google Scholar
  54. 54.
    Pan, Z., Healey, G., Prasad, M., Tromberg, B.: Face recognition in hyperspectral images. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1552–1560 (2003)CrossRefGoogle Scholar
  55. 55.
    Efraty, B., Bilgazyev, E., Shah, S., Kakadiaris, I.A.: Profile-based 3d-aided face recognition. Pattern Recognition 45(1), 43–53 (2012)CrossRefGoogle Scholar
  56. 56.
    Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image understanding for iris biometrics: A survey. Computer Vision and Image Understanding 110(2), 281–307 (2008)CrossRefGoogle Scholar
  57. 57.
    Hollingsworth, K., Bowyer, K.W., Lagree, S., Fenker, S.P., Flynn, P.J.: Genetically identical irises have texture similarity that is not detected by iris biometrics. Computer Vision and Image Understanding 115(11), 1493–1502 (2011)CrossRefGoogle Scholar
  58. 58.
    Hollingsworth, K., Bowyer, K.W., Flynn, P.J.: Pupil dilation degrades iris biometric performance. Computer Vision and Image Understanding 113(1), 150–157 (2009)CrossRefGoogle Scholar
  59. 59.
    Baker, S.E., Hentz, A., Bowyer, K.W., Flynn, P.J.: Degradation of iris recognition performance due to non-cosmetic prescription contact lenses. Computer Vision and Image Understanding 114(9), 1030–1044 (2010)CrossRefGoogle Scholar
  60. 60.
    He, Z., Tan, T., Sun, Z., Qiu, X.: Toward accurate and fast iris segmentation for iris biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(9), 1670–1684 (2009)CrossRefGoogle Scholar
  61. 61.
    Kumar, A., Passi, A.: Comparison and combination of iris matchers for reliable personal authentication. Pattern Recognition 43(3), 1016–1026 (2010)zbMATHCrossRefGoogle Scholar
  62. 62.
    Santos, G., Hoyle, E.: A fusion approach to unconstrained iris recognition. Pattern Recognition Letters 10.1016/j.patrec.2011.08.017(0) (2011)Google Scholar
  63. 63.
    Amayeh, G., Bebis, G., Erol, A., Nicolescu, M.: Hand-based verification and identification using palm-finger segmentation and fusion. Computer Vision and Image Understanding 113(4), 477–501 (2009)CrossRefGoogle Scholar
  64. 64.
    Chen, J., Moon, Y.S., Wong, M.F., Su, G.: Palmprint authentication using a symbolic representation of images. Image and Vision Computing 28(3), 343–351 (2010)CrossRefGoogle Scholar
  65. 65.
    Kong, A., Zhang, D., Kamel, M.: A survey of palmprint recognition. Pattern Recognition 42(7), 1408–1418 (2009)CrossRefGoogle Scholar
  66. 66.
    Nicolae, D.: A survey of biometric technology based on hand shape. Pattern Recognition 42(11), 2797–2806 (2009)CrossRefGoogle Scholar
  67. 67.
    Lin, P.L., Lai, Y.H., Huang, P.W.: Dental biometrics: Human identification based on teeth and dental works in bitewing radiographs. Pattern Recognition 45(3), 934–946 (2012)CrossRefGoogle Scholar
  68. 68.
    Arbab-Zavar, B., Nixon, M.S.: On guided model-based analysis for ear biometrics. Computer Vision and Image Understanding 115(4), 487–502 (2011)CrossRefGoogle Scholar
  69. 69.
    Alefs, B., den Hollander, R., Nennie, F., van der Houwen, E., Bruijn, M., van der Mark, W., Noordam, J.: Thorax biometrics from millimetre-wave images. Pattern Recognition Letters 31(15), 2357–2363 (2010)CrossRefGoogle Scholar
  70. 70.
    Xu, Y., Zhang, D., Yang, J.Y.: A feature extraction method for use with bimodal biometrics. Pattern Recognition 43(3), 1106–1115 (2010)zbMATHCrossRefGoogle Scholar
  71. 71.
    Xu, Y., Zhu, Q., Zhang, D.: Combine crossing matching scores with conventional matching scores for bimodal biometrics and face and palmprint recognition experiments. Neurocomputing 74(18), 3946–3952 (2011)CrossRefGoogle Scholar
  72. 72.
    Marcialis, G.L., Roli, F., Didaci, L.: Personal identity verification by serial fusion of fingerprint and face matchers. Pattern Recognition 42(11), 2807–2817 (2009)zbMATHCrossRefGoogle Scholar
  73. 73.
    Alsaade, F., Ariyaeeinia, A., Malegaonkar, A., Pillay, S.: Qualitative fusion of normalised scores in multimodal biometrics. Pattern Recognition Letters 30(5), 564–569 (2009)CrossRefGoogle Scholar
  74. 74.
    Hanmandlu, M., Grover, J., Gureja, A., Gupta, H.: Score level fusion of multimodal biometrics using triangular norms. Pattern Recognition Letters 32(14), 1843–1850 (2011)CrossRefGoogle Scholar
  75. 75.
    Raghavendra, R., Dorizzi, B., Rao, A., Kumar, G.H.: Designing efficient fusion schemes for multimodal biometric systems using face and palmprint. Pattern Recognition 44(5), 1076–1088 (2011)zbMATHCrossRefGoogle Scholar
  76. 76.
    Bhatnagar, G., Wu, J., Raman, B.: Fractional dual tree complex wavelet transform and its application to biometric security during communication and transmission. Future Generation Computer Systems 28(1), 254–267 (2012)CrossRefGoogle Scholar
  77. 77.
    Acharya, B., Sharma, M.D., Tiwari, S., Minz, V.K.: Privacy protection of biometric traits using modified hill cipher with involutory key and robust cryptosystem. Procedia Computer Science 2(0), 242–247 (2010)CrossRefGoogle Scholar
  78. 78.
    Bolle, R.M., Connell, J.H., Ratha, N.K.: Biometric perils and patches. Pattern Recognition 35(12), 2727–2738 (2002)zbMATHCrossRefGoogle Scholar
  79. 79.
    Lee, H., Lim, J., Yu, S., Kim, S., Lee, S.: Biometric image authentication using watermarking. In: International Joint Conference on SICE-ICASE 2006, pp. 3950 –3953 (2006)Google Scholar
  80. 80.
    Allah, M.M.A.: Embedded biometric data for a secure authentication watermarking. In: Proceedings of the Fourth conference on IASTED International Conference: Signal Processing, Pattern Recognition, and Applications, Anaheim, CA, USA, pp. 191–196. ACTA Press (2007)Google Scholar
  81. 81.
    Kim, W.G., Lee, H.: Multimodal biometric image watermarking using two-stage integrity verification. Signal Processing 89(12), 2385–2399 (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ion Marqués
    • 1
  • Manuel Graña
    • 1
  1. 1.Grupo de Inteligencia ComputacionalUPV/EHUSpain

Personalised recommendations