Advertisement

Comparison of Fuzzy Functions for Low Quality Data GAP Algorithms

  • Enrique de la Cal
  • José R. Villar
  • Marco García-Tamargo
  • Javier Sedano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7209)

Abstract

The undesired effects of data gathered from real world can be produced by the noise in the process, the bias of the sensors and the presence of hysteresis, among other uncertainty sources.

Data gathered by this way are called Low Quality Data (LQD). Thus, uncertainty representation tools are needed for using in learning models with this kind of data.

This work presents a method to represent the uncertainty and an approach for learning white box Equation Based Models (EBM). The proficiency of the representations with different noise levels and fitness functions typology is compared.

The numerical results show that the use of the described objectives improves the proficiency of the algorithms. It has been also proved that each meta-heuristic determines the typology of fitness function.

Keywords

Low Quality Data Simulated Annealing Genetic Programming Algorithm Equation Based Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berzosa, A., Villar, J.R., Sedano, J., García-Tamargo, M., de la Cal, E.: An Study of the Tree Generation Algorithms in Equation Based Model Learning with Low Quality Data. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part II. LNCS, vol. 6679, pp. 84–91. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Brameier, M., Banzhaf, W.: Explicit Control of Diversity and Effective Variation Distance in Linear Genetic Programming. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 37–49. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Couso, I., Sánchez, L.: Higher order models for fuzzy random variables. Fuzzy Sets Syst. 159, 237–258 (2008)zbMATHCrossRefGoogle Scholar
  4. 4.
    Ekárt, A., Németh, S.Z.: A Metric for Genetic Programs and Fitness Sharing. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 259–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Folleco, A., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: Identifying learners robust to low quality data. Informatica (Slovenia) 33(3), 245–259 (2009)zbMATHGoogle Scholar
  6. 6.
    Howard, L., D’ Angelo, D.: The ga-p: a genetic algorithm and genetic programming hybrid. IEEE Expert 10, 11–15 (1995)CrossRefGoogle Scholar
  7. 7.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  8. 8.
    Lee-Kwang, H., Lee, J.-H.: Method for ranking fuzzy numbers and its application to decision-making. IEEE Transactions on Fuzzy Systems 7(6), 677–685 (1999)CrossRefGoogle Scholar
  9. 9.
    Luengo, J., Herrera, F.: Domains of competence of fuzzy rule based classification systems with data complexity measures: A case of study using a fuzzy hybrid genetic based machine learning method. Fuzzy Sets and Systems 161(1), 3–19 (2010); Special section: New Trends on Pattern Recognition with Fuzzy ModelsMathSciNetCrossRefGoogle Scholar
  10. 10.
    Sánchez, L.: Interval-valued gap algorithms. IEEE Transactions on Evolutionary Computation 4, 64–72 (2000)CrossRefGoogle Scholar
  11. 11.
    Sánchez, L., Couso, I., Casillas, J.: Genetic learning of fuzzy rules based on low quality data. Fuzzy Sets and Systems 160(17), 2524–2552 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Sánchez, L., Couso, I., Corrales, J.A.: Combining gp operators with sa seach to evolve fuzzy rule classifiers. Information Sciences 136, 175–192 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Sánchez, L., Rosario Suárez, M., Villar, J.R., Couso, I.: Mutual information-based feature selection and partition design in fuzzy rule-based classifiers from vague data. Int. J. Approx. Reasoning 49, 607–622 (2008)CrossRefGoogle Scholar
  14. 14.
    Sánchez, L., Villar, J.R.: Obtaining transparent models of chaotic systems with multi-objective simulated annealing algorithms. Inf. Sci. 178, 952–970 (2008)zbMATHCrossRefGoogle Scholar
  15. 15.
    Slowik, A.: Fuzzy Control of Trade-off Between Exploration and Exploitation Properties of Evolutionary Algorithms. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS, vol. 6678, pp. 59–66. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Villar, J.R., Berzosa, A., de la Cal, E., Sedano, J., García-Tamargo, M.: Multi-objective learning of white box models with low quality data. Neurocomputing (in Press)Google Scholar
  17. 17.
    Villar, J.R., Otero, A., Otero, J., Sánchez, L.: Taximeter verification using imprecise data from gps. Eng. Appl. Artif. Intell. 22, 250–260 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Enrique de la Cal
    • 1
  • José R. Villar
    • 1
  • Marco García-Tamargo
    • 1
  • Javier Sedano
    • 2
  1. 1.Computer Science DepartmentUniversity of OviedoGijónSpain
  2. 2.Instituto Tecnológico de Castilla y LeónBurgosSpain

Personalised recommendations