Advertisement

Round-Optimal Privacy-Preserving Protocols with Smooth Projective Hash Functions

  • Olivier Blazy
  • David Pointcheval
  • Damien Vergnaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7194)

Abstract

In 2008, Groth and Sahai proposed a powerful suite of techniques for constructing non-interactive zero-knowledge proofs in bilinear groups. Their proof systems have found numerous applications, including group signature schemes, anonymous voting, and anonymous credentials. In this paper, we demonstrate that the notion of smooth projective hash functions can be useful to design round-optimal privacy-preserving interactive protocols. We show that this approach is suitable for designing schemes that rely on standard security assumptions in the standard model with a common-reference string and are more efficient than those obtained using the Groth-Sahai methodology. As an illustration of our design principle, we construct an efficient oblivious signature-based envelope scheme and a blind signature scheme, both round-optimal.

Keywords

Encryption Scheme Signature Scheme Random Oracle Blind Signature Valid Signature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth Projective Hashing for Conditionally Extractable Commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 671–689. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Balfanz, D., Durfee, G., Shankar, N., Smetters, D., Staddon, J., Wong, H.-C.: Secret handshakes from pairing-based key agreements. In: IEEE Symposium on Security and Privacy, pp. 180–196 (2003)Google Scholar
  4. 4.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: 38th Annual Symposium on Foundations of Computer Science, pp. 394–403. IEEE Computer Society Press (October 1997)Google Scholar
  5. 5.
    Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on Randomizable Ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 403–422. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Blazy, O., Pointcheval, D., Vergnaud, D.: Round-Optimal Privacy-Preserving Protocols with Smooth Projective Hash Functions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 94–110. Springer, Heidelberg (2012)Google Scholar
  7. 7.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Boyen, X., Waters, B.: Compact Group Signatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Boyen, X., Waters, B.: Full-Domain Subgroup Hiding and Constant-Size Group Signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Bradshaw, R.W., Holt, J.E., Seamons, K.E.: Concealing complex policies with hidden credentials. In: Atluri, V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004: 11th Conference on Computer and Communications Security, pp. 146–157. ACM Press (October 2004)Google Scholar
  11. 11.
    Castelluccia, C., Jarecki, S., Tsudik, G.: Secret Handshakes from CA-Oblivious Encryption. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 293–307. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology – CRYPTO 1982, pp. 199–203. Plenum Press, New York (1983)Google Scholar
  13. 13.
    Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–1543 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fischlin, M.: Round-Optimal Composable Blind Signatures in the Common Reference String Model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156(16), 3113–3121 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round Optimal Blind Signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648. Springer, Heidelberg (2011)Google Scholar
  18. 18.
    Gennaro, R., Lindell, Y.: A Framework for Password-Based Authenticated Key Exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543. Springer, Heidelberg (2003), http://eprint.iacr.org/2003/032.ps.gz CrossRefGoogle Scholar
  19. 19.
    Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. ACM Transactions on Information and System Security 9(2), 181–234 (2006)CrossRefGoogle Scholar
  20. 20.
    Groth, J.: Fully Anonymous Group Signatures Without Random Oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive Zaps and New Techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hazay, C., Katz, J., Koo, C.-Y., Lindell, Y.: Concurrently-Secure Blind Signatures Without Random Oracles or Setup Assumptions. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Juels, A., Guajardo, J.: RSA Key Generation with Verifiable Randomness. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 357–374. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Kalai, Y.T.: Smooth Projective Hashing and Two-Message Oblivious Transfer. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Li, N., Du, W., Boneh, D.: Oblivious signature-based envelope. In: 22nd ACM Symposium Annual on Principles of Distributed Computing, pp. 182–189. ACM Press (July 2003)Google Scholar
  28. 28.
    Shacham, H.: A Cramer-Shoup encryption scheme from the Linear Assumption and from progressively weaker Linear variants. Cryptology ePrint Archive, Report 2007/074 (February 2007), http://eprint.iacr.org/
  29. 29.
    Shoup, V.: OAEP reconsidered. Journal of Cryptology 15(4), 223–249 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olivier Blazy
    • 1
  • David Pointcheval
    • 1
  • Damien Vergnaud
    • 1
  1. 1.ENSParisFrance

Personalised recommendations