Advertisement

Uniqueness Is a Different Story: Impossibility of Verifiable Random Functions from Trapdoor Permutations

  • Dario Fiore
  • Dominique Schröder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7194)

Abstract

Verifiable random functions (VRFs) are pseudorandom functions with the additional property that the owner of the seed SK can issue publicly-verifiable proofs for the statements “f(SK,x) = y”, for any input x. Moreover, the output of VRFs is guaranteed to be unique, which means that y = f(SK,x) is the only image that can be proven to map to x. Despite their popularity, constructing VRFs seems to be a challenging task and only a few constructions based on specific number-theoretic problems are known. Basing a scheme on general assumptions is still an open problem. Towards this direction, Brakerski et al. showed that verifiable random functions cannot be constructed from one-way permutations in a black-box way.

In this paper we continue the study of the relationship between VRFs and well-established cryptographic primitives. Our main result is a separation of VRFs and adaptive trapdoor permutations (ATDPs) in a black-box manner. This result sheds light on the nature of VRFs and is interesting for at least three reasons:

  • First, the separation result of Brakerski et al.  gives the impression that VRFs belong to the “public-key world”, and thus their relationship with other public-key primitives is interesting. Our result, however, shows that VRFs are strictly stronger and cannot be constructed (in a black-box way) form primitives like e.g., public-key encryption (even CCA-secure), oblivious transfer, and key-agreement.

  • Second, the notion of VRFs is closely related to weak verifiable random functions and verifiable pseudorandom generators which are both implied by TDPs. Dwork and Naor (FOCS 2000) asked whether there are transformation between the verifiable primitives similar to the case of “regular” PRFs and PRGs. Here, we give a negative answer to this problem showing that the case of verifiable random functions is essentially different.

  • Finally, our result also shows that unique signatures cannot be instantiated from ATDPs. While it is well known that standard signature schemes are equivalent to OWFs, we essentially show that the uniqueness property is crucial to change the relations between primitives.

Keywords

Signature Scheme Random Function Oblivious Transfer Pseudorandom Function Oracle Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th Annual Symposium on Foundations of Computer Science, pp. 120–130. IEEE Computer Society Press (1999)Google Scholar
  2. 2.
    Micali, S., Reyzin, L.: Soundness in the Public-key Model. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Micali, S., Rivest, R.L.: Transitive Signature Schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 236–243. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Jarecki, S., Shmatikov, V.: Handcuffing Big Brother: an Abuse-Resilient Transaction Escrow Scheme. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 590–608. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Liskov, M.: Updatable Zero-Knowledge Databases. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 174–198. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Lysyanskaya, A.: Unique Signatures and Verifiable Random Functions from the DH-DDH Separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Dodis, Y.: Efficient Construction of (Distributed) Verifiable Random Functions. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 1–17. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Dodis, Y., Yampolskiy, A.: A Verifiable Random Function with Short Proofs and Keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Abdalla, M., Catalano, D., Fiore, D.: Verifiable Random Functions from Identity-Based Key Encapsulation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 554–571. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Hohenberger, S., Waters, B.: Constructing Verifiable Random Functions with Large Input Spaces. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 656–672. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of Reducibility between Cryptographic Primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: 21st Annual ACM Symposium on Theory of Computing, pp. 44–61. ACM Press (1989)Google Scholar
  13. 13.
    Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relationship between public key encryption and oblivious transfer. In: 41st Annual Symposium on Foundations of Computer Science, pp. 325–335. IEEE Computer Society Press (2000)Google Scholar
  14. 14.
    Fiore, D., Schröder, D.: Uniqueness is a different story: Impossibility of verifiable random functions from trapdoor permutations. Cryptology ePrint Archive, Report 2010/648 (2010), http://eprint.iacr.org/
  15. 15.
    Bresson, E., Monnerat, J., Vergnaud, D.: Separation Results on the “One-More” Computational Problems. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 71–87. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Fischlin, M., Schröder, D.: On the Impossibility of Three-Move Blind Signature Schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Brakerski, Z., Goldwasser, S., Rothblum, G.N., Vaikuntanathan, V.: Weak Verifiable Random Functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 558–576. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Naor, M., Reingold, O.: Synthesizer and their applications to the parallel construction of pseudo-random functions. Journal of Computer and System Sciences 58 (1999)Google Scholar
  19. 19.
    Maurer, U.M., Sjödin, J.: A Fast and Key-Efficient Reduction of Chosen-Ciphertext to Known-Plaintext Security. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 498–516. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Dwork, C., Naor, M.: Zaps and their applications. SIAM Journal on Computing 36, 1513–1543 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the ACM 33, 792–807 (1986)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive Trapdoor Functions and Chosen-Ciphertext Security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 673–692. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the impossibility of basing identity based encryption on trapdoor permutations. In: 49th Annual Symposium on Foundations of Computer Science, pp. 283–292. IEEE Computer Society Press (2008)Google Scholar
  24. 24.
    Hsiao, C.-Y., Reyzin, L.: Finding Collisions on a Public Road, or Do Secure Hash Functions Need Secret Coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 92–105. Springer, Heidelberg (2004)Google Scholar
  25. 25.
    Goldwasser, S., Ostrovsky, R.: Invariant Signatures and Non-interactive Zero-Knowledge Proofs Are Equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 228–245. Springer, Heidelberg (1993)Google Scholar
  26. 26.
    Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st Annual ACM Symposium on Theory of Computing, pp. 25–32. ACM Press (1989)Google Scholar
  27. 27.
    Dodis, Y., Puniya, P.: Feistel Networks Made Public, and Applications. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 534–554. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Dodis, Y., Oliveira, R., Pietrzak, K.: On the Generic Insecurity of the Full Domain Hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer, Heidelberg (2005)Google Scholar
  29. 29.
    Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM Journal on Computing 36, 915–942 (2006)MathSciNetGoogle Scholar
  30. 30.
    Gertner, Y., Malkin, T., Myers, S.: Towards a Separation of Semantic and CCA Security for Public Key Encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 434–455. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Rosen, A., Segev, G.: Chosen-Ciphertext Security via Correlated Products. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Katz, J., Schröder, D., Yerukhimovich, A.: Impossibility of Blind Signatures from One-Way Permutations. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 615–629. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Vahlis, Y.: Two Is a Crowd? A Black-Box Separation of One-Wayness and Security under Correlated Inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 165–182. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dario Fiore
    • 1
  • Dominique Schröder
    • 2
  1. 1.Department of Computer ScienceNew York UniversityUSA
  2. 2.Department of Computer ScienceUniversity of MarylandUSA

Personalised recommendations