Subspace LWE

  • Krzysztof Pietrzak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7194)

Abstract

The (decisional) learning with errors problem (LWE) asks to distinguish “noisy” inner products of a secret vector with random vectors from uniform. The learning parities with noise problem (LPN) is the special case where the elements of the vectors are bits. In recent years, the LWE and LPN problems have found many applications in cryptography.

In this paper we introduce a (seemingly) much stronger adaptive assumption, called “subspace LWE” (SLWE), where the adversary can learn the inner product of the secret and random vectors after they were projected into an adaptively and adversarially chosen subspace. We prove that, surprisingly, the SLWE problem mapping into subspaces of dimension d is almost as hard as LWE using secrets of length d (the other direction is trivial.)

This result immediately implies that several existing cryptosystems whose security is based on the hardness of the LWE/LPN problems are provably secure in a much stronger sense than anticipated. As an illustrative example we show that the standard way of using LPN for symmetric CPA secure encryption is even secure against a very powerful class of related key attacks.

Keywords

Encryption Scheme Authentication Scheme Random Oracle Oblivious Transfer Auxiliary Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [ABB10a]
    Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. [ABB10b]
    Agrawal, S., Boneh, D., Boyen, X.: Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext Hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010)Google Scholar
  3. [ABBC10]
    Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic Agility and Its Relation to Circular Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 403–422. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. [ACPS09]
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Primitives and Circular-Secure Encryption Based on Hard Learning Problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. [ADW09]
    Alwen, J., Dodis, Y., Wichs, D.: Leakage-Resilient Public-Key Cryptography in the Bounded-Retrieval Model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. [AGV09]
    Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. [AHI11]
    Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks and applications. In: 2nd Innovations in Computer Science (ICS), pp. 45–60 (2011)Google Scholar
  8. [Ale03]
    Alekhnovich, M.: More on average case vs approximation complexity. In: 44th FOCS, pp. 298–307. IEEE Computer Society Press (October 2003)Google Scholar
  9. [BC10]
    Bellare, M., Cash, D.: Pseudorandom Functions and Permutations Provably Secure against Related-Key Attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 666–684. Springer, Heidelberg (2010)Google Scholar
  10. [BDK06]
    Biham, E., Dunkelman, O., Keller, N.: New Cryptanalytic Results on IDEA. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 412–427. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. [BDK08]
    Biham, E., Dunkelman, O., Keller, N.: A Unified Approach to Related-Key Attacks. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 73–96. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. [BFKL94]
    Blum, A., Furst, M.L., Kearns, M., Lipton, R.J.: Cryptographic Primitives Based on Hard Learning Problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994)Google Scholar
  13. [BG10]
    Brakerski, Z., Goldwasser, S.: Circular and Leakage Resilient Public-Key Encryption under Subgroup Indistinguishability (or: Quadratic Residuosity Strikes Back). In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010)Google Scholar
  14. [BHHI10]
    Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded Key-Dependent Message Security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. [BHHO08]
    Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-Secure Encryption from Decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)Google Scholar
  16. [Bih94]
    Biham, E.: New types of cryptanalytic attacks using related keys. Journal of Cryptology 7(4), 229–246 (1994)CrossRefMATHGoogle Scholar
  17. [BK03]
    Bellare, M., Kohno, T.: A Theoretical Treatment of Related-key Attacks: RKA-PRPs, RKA-PRFs, and Applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. [BKW00]
    Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem, and the statistical query model. In: 32nd ACM STOC, pp. 435–440. ACM Press (May 2000)Google Scholar
  19. [BRS03]
    Black, J., Rogaway, P., Shrimpton, T.: Encryption-Scheme Security in the Presence of Key-Dependent Messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. [CDD+07]
    Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R.J., Walfish, S.: Intrusion-Resilient Key Exchange in the Bounded Retrieval Model. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. [CGH+85]
    Chor, B., Goldreich, O., Hastad, J., Friedman, J., Rudich, S., Smolensky, R.: The bit extraction problem of t-resilient functions (preliminary version). In: FOCS, pp. 396–407 (1985)Google Scholar
  22. [CHKP10]
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. [DGK+10]
    Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.: Public-Key Encryption Schemes with Auxiliary Inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. [DKL09]
    Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 621–630. ACM Press (May/June 2009)Google Scholar
  25. [DP07]
    Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: 48th FOCS, pp. 227–237. IEEE Computer Society Press (October 2007)Google Scholar
  26. [DP08]
    Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th FOCS, pp. 293–302. IEEE Computer Society Press (October 2008)Google Scholar
  27. [DW09]
    Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography from weak secrets. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 601–610. ACM Press (May/June 2009)Google Scholar
  28. [Dzi06]
    Dziembowski, S.: Intrusion-Resilience via the Bounded-Storage Model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. [FKL+00]
    Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.L.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  30. [FS96]
    Fischer, J.-B., Stern, J.: An Efficient Pseudo-random Generator Provably as Secure as Syndrome Decoding. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 245–255. Springer, Heidelberg (1996)Google Scholar
  31. [GKPV10]
    Goldwasser, S., Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: 1st Innovations in Computer Science (ICS) (2010)Google Scholar
  32. [GM84]
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28(2), 270–299 (1984)MathSciNetCrossRefMATHGoogle Scholar
  33. [GPV08]
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press (May 2008)Google Scholar
  34. [GRS08]
    Gilbert, H., Robshaw, M., Seurin, Y.: How to Encrypt with the LPN Problem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 679–690. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  35. [HK07]
    Halevi, S., Krawczyk, H.: Security under key-dependent inputs. In: Ning, P., De Capitani di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007, pp. 466–475. ACM Press (October 2007)Google Scholar
  36. [HU08]
    Hofheinz, D., Unruh, D.: Towards Key-Dependent Message Security in the Standard Model. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 108–126. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  37. [ISW03]
    Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  38. [JD04]
    Jakimoski, G., Desmedt, Y.: Related-key Differential Cryptanalysis of 192-Bit Key AES Variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 208–221. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  39. [Kea93]
    Kearns, M.J.: Efficient noise-tolerant learning from statistical queries. In: 25th ACM STOC, pp. 392–401. ACM Press (May 1993)Google Scholar
  40. [Knu92]
    Knudsen, L.R.: Cryptanalysis of LOKI91. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  41. [KPC+11]
    Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient Authentication from Hard Learning Problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 7–26. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  42. [KS06]
    Katz, J., Shin, J.S.: Parallel and Concurrent Security of the HB and HB +  Protocols. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  43. [KTX08]
    Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently Secure Identification Schemes Based on the Worst-Case Hardness of Lattice Problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  44. [KV09]
    Katz, J., Vaikuntanathan, V.: Signature Schemes with Bounded Leakage Resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  45. [LMPR08]
    Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A Modest Proposal for FFT Hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  46. [Luc04]
    Lucks, S.: Ciphers Secure against Related-Key Attacks. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 359–370. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  47. [Lyu08]
    Lyubashevsky, V.: Lattice-Based Identification Schemes Secure Under Active Attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  48. [Lyu09]
    Lyubashevsky, V.: Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  49. [MR04]
    Micali, S., Reyzin, L.: Physically Observable Cryptography (Extended Abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  50. [Pei09]
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 333–342. ACM Press (May/June 2009)Google Scholar
  51. [Pie09]
    Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  52. [PR06]
    Peikert, C., Rosen, A.: Efficient Collision-Resistant Hashing from Worst-Case Assumptions on Cyclic Lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  53. [PVW08]
    Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)Google Scholar
  54. [PW08]
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187–196. ACM Press (May 2008)Google Scholar
  55. [Reg05]
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press (May 2005)Google Scholar
  56. [Ste94]
    Stern, J.: A New Identification Scheme Based on Syndrome Decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)Google Scholar
  57. [ZZWF07]
    Zhang, W., Zhang, L., Wu, W., Feng, D.: Related-Key Differential-Linear Attacks on Reduced AES-192. In: Srinathan, K., Pandu Rangan, C., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 73–85. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Krzysztof Pietrzak
    • 1
  1. 1.ISTAustria

Personalised recommendations