Simultaneously Resettable Arguments of Knowledge

  • Chongwon Cho
  • Rafail Ostrovsky
  • Alessandra Scafuro
  • Ivan Visconti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7194)


In this work, we study simultaneously resettable arguments of knowledge. As our main result, we show a construction of a constant-round simultaneously resettable witness-indistinguishable argument of knowledge (simres \(\mathcal{WI}\) AoK, for short) for any NP language. We also show two applications of simres \(\mathcal{WI}\) AoK: the first constant-round simultaneously resettable zero-knowledge argument of knowledge in the Bare Public-Key Model; and the first simultaneously resettable identification scheme which follows the knowledge extraction paradigm.


Commitment Scheme Protocol Message Honest Party Knowledge Property Consistency Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alwen, J., Persiano, G., Visconti, I.: Impossibility and Feasibility Results for Zero Knowledge with Public Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 135–151. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Arita, S.: A constant-round resettably-sound resettable zero-knowledge argument in the bpk model. Cryptology ePrint Archive, Report 2011/404 (2011),
  3. 3.
    Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp. 106–115 (2001)Google Scholar
  4. 4.
    Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-sound zero-knowledge and its applications. In: FOCS, pp. 116–125 (2001)Google Scholar
  5. 5.
    Bellare, M., Fischlin, M., Goldwasser, S., Micali, S.: Identification Protocols Secure against Reset Attacks. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 495–511. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Blum, M.: How to Prove a Theorem So No One Else Can Claim It. In: Proceedings of the International Congress of Mathematicians, pp. 1444–1451 (1986)Google Scholar
  7. 7.
    Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge (extended abstract). In: STOC, pp. 235–244 (2000)Google Scholar
  8. 8.
    Deng, Y., Feng, D., Goyal, V., Lin, D., Sahai, A., Yung, M.: Resettable Cryptography in Constant Rounds – The Case of Zero Knowledge. In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 390–406. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability conjecture and a new non-black-box simulation strategy. In: FOCS, pp. 251–260. IEEE Computer Society (2009)Google Scholar
  10. 10.
    Di Crescenzo, G., Persiano, G., Visconti, I.: Constant-Round Resettable Zero Knowledge with Concurrent Soundness in the Bare Public-Key Model. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 237–253. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, STOC 1998, pp. 409–418. ACM (1998)Google Scholar
  12. 12.
    Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Garg, S., Ostrovsky, R., Visconti, I., Wadia, A.: Resettable Statistical Zero Knowledge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 494–511. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for np. J. Cryptology 9(3), 167–190 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: Proceedings of the 17th Annual ACM Symposium on Theory of Computing, STOC 1985, pp. 291–304. ACM (1985)Google Scholar
  16. 16.
    Goyal, V., Maji, H.K.: Stateless cryptographic protocols. In: FOCS 2011 (2011)Google Scholar
  17. 17.
    Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-logarithmic rounds. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, STOC 2001, pp. 560–569. ACM (2001)Google Scholar
  18. 18.
    Kilian, J., Petrank, E., Rackoff, C.: Lower bounds for zero knowledge on the internet. In: Proceedings of 39th IEEE Conference on the Foundations of Computer Science, FOCS 1998, pp. 484–492 (1998)Google Scholar
  19. 19.
    Micali, S., Reyzin, L.: Soundness in the Public-Key Model. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Pass, R., Rosen, A.: New and improved constructions of non-malleable cryptographic protocols. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, STOC 2005, pp. 533–542. ACM (2005)Google Scholar
  21. 21.
    Scafuro, A., Visconti, I.: On round-optimal zero knowledge in the bare public-key model. In: EUROCRYPT. LNCS. Springer, Heidelberg (2012)Google Scholar
  22. 22.
    Yung, M., Zhao, Y.: Generic and Practical Resettable Zero-Knowledge in the Bare Public-Key Model. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 129–147. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chongwon Cho
    • 1
  • Rafail Ostrovsky
    • 1
    • 2
  • Alessandra Scafuro
    • 3
  • Ivan Visconti
    • 3
  1. 1.Department of Computer ScienceUCLAUSA
  2. 2.Department of MathematicsUCLAUSA
  3. 3.Dipartimento di InformaticaUniversity of SalernoItaly

Personalised recommendations