Hardness Preserving Constructions of Pseudorandom Functions

  • Abhishek Jain
  • Krzysztof Pietrzak
  • Aris Tentes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7194)

Abstract

We show a hardness-preserving construction of a PRF from any length doubling PRG which improves upon known constructions whenever we can put a non-trivial upper bound q on the number of queries to the PRF. Our construction requires only O(logq) invocations to the underlying PRG with each query. In comparison, the number of invocations by the best previous hardness-preserving construction (GGM using Levin’s trick) is logarithmic in the hardness of the PRG.

For example, starting from an exponentially secure PRG {0,1}n ↦{0,1}2n, we get a PRF which is exponentially secure if queried at most \(q=\exp(\sqrt n)\) times and where each invocation of the PRF requires \(\Theta(\sqrt n)\) queries to the underlying PRG. This is much less than the Θ(n) required by known constructions.

References

  1. 1.
    Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: EUROCRYPT (2012)Google Scholar
  2. 2.
    Bellare, M., Goldwasser, S.: New Paradigms for Digital Signatures and Message Authentication Based on Non-interactive Zero Knowledge Proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990)Google Scholar
  3. 3.
    Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo random bits. In: FOCS, pp. 112–117 (1982)Google Scholar
  5. 5.
    Boneh, D., Montgomery, H.W., Raghunathan, A.: Algebraic pseudorandom functions with improved efficiency from the augmented cascade. In: ACM Conference on Computer and Communications Security, pp. 131–140 (2010)Google Scholar
  6. 6.
    Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Goldreich, O.: Two Remarks Concerning the Goldwasser-Micali-Rivest Signature Scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110. Springer, Heidelberg (1987)Google Scholar
  8. 8.
    Goldreich, O.: Towards a theory of software protection and simulation by oblivious rams. In: STOC, pp. 182–194 (1987)Google Scholar
  9. 9.
    Goldreich, O., Goldwasser, S., Micali, S.: On the Cryptographic Applications of Random Functions. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 276–288. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  10. 10.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jetchev, D., Özen, O., Stam, M.: Probabilistic analysis of adaptive adversaries revisited. Manuscript in preparation (2011)Google Scholar
  12. 12.
    Katz, J., Lindell, Y.: Introduction to Modern CryptographyGoogle Scholar
  13. 13.
    Levin, L.A.: One-way functions and pseudorandom generators. Combinatorica 7(4), 357–363 (1987)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the decisional linear assumption and weaker variants. In: ACM Conference on Computer and Communications Security, pp. 112–120 (2009)Google Scholar
  15. 15.
    Luby, M.: Pseudorandomness and cryptographic applications. Princeton computer science notes. Princeton University Press, Princeton (1996)MATHGoogle Scholar
  16. 16.
    Luby, M., Rackoff, C.: A Study of Password Security. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 392–397. Springer, Heidelberg (1988)Google Scholar
  17. 17.
    Maurer, U.M.: Indistinguishability of Random Systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Naor, M., Reingold, O.: Synthesizers and their application to the parallel construction of psuedo-random functions. In: FOCS, pp. 170–181 (1995)Google Scholar
  19. 19.
    Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: 38th Annual Symposium on Foundations of Computer Science, pp. 458–467. IEEE Computer Society Press (October 1997)Google Scholar
  20. 20.
    Naor, M., Reingold, O., Rosen, A.: Pseudo-random functions and factoring (extended abstract). In: STOC, pp. 11–20 (2000)Google Scholar
  21. 21.
    Wegman, M.N., Carter, L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Yao, A.C.-C.: Theory and applications of trapdoor functions (extended abstract). In: FOCS, pp. 80–91 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Abhishek Jain
    • 1
  • Krzysztof Pietrzak
    • 2
  • Aris Tentes
    • 3
  1. 1.UCLAUSA
  2. 2.ISTAustria
  3. 3.New York UniversityUSA

Personalised recommendations