Collisions Are Not Incidental: A Compression Function Exploiting Discrete Geometry

  • Dimitar Jetchev
  • Onur Özen
  • Martijn Stam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7194)

Abstract

We present a new construction of a compression function \(\ensuremath{{\if!! {{H}} \else{{H}_{}}\fi}} \colon \ensuremath{\{0,1\}}^{3\ensuremath{n} } \rightarrow \ensuremath{\{0,1\}}^{2\ensuremath{n} }\) that uses two parallel calls to an ideal primitive (an ideal blockcipher or a public random function) from \({2\ensuremath{n} }\) to \({\ensuremath{n} }\) bits. This is similar to the well-known MDC-2 or the recently proposed MJH by Lee and Stam (CT-RSA’11). However, unlike these constructions, we show already in the compression function that an adversary limited (asymptotically in n ) to \(\mathcal{O}(2^{2\ensuremath{n} (1-\delta)/3})\) queries (for any δ > 0) has disappearing advantage to find collisions. A key component of our construction is the use of the Szemerédi–Trotter theorem over finite fields to bound the number of full compression function evaluations an adversary can make, in terms of the number of queries to the underlying primitives. Moveover, for the security proof we rely on a new abstraction that refines and strenghtens existing techniques. We believe that this framework elucidates existing proofs and we consider it of independent interest.

References

  1. 1.
    Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Black, J., Rogaway, P., Shrimpton, T., Stam, M.: An analysis of the blockcipher-based hash functions from PGV. Journal of Cryptology 23(4), 519–545 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brachtl, B., Coppersmith, D., Hyden, M., Matyas Jr., S., Meyer, C., Oseas, J., Pilpel, S., Schilling, M.: Data authentication using modification detection codes based on a public one-way encryption function. U.S. Patent No 4,908,861 (1990)Google Scholar
  4. 4.
    Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Functions. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  6. 6.
    Lucks, S.: A collision-resistant rate-1 double-block-length hash function. In: Biham, E., Handschuh, H., Lucks, S., Rijmen, V. (eds.) Symmetric Cryptography. No. 07021 in Dagstuhl Seminar Proceedings, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany (2007), http://drops.dagstuhl.de/opus/volltexte/2007/1017
  7. 7.
    Maurer, U.M.: Indistinguishability of Random Systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Pietrzak, K.: Indistinguishability and Composition of Random Systems. Ph.D. thesis, ETH Zurich (2005)Google Scholar
  9. 9.
    Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers: A Synthetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Rogaway, P., Steinberger, J.: Constructing cryptographic hash functions from fixed-key blockciphers. In: Wagner (ed.) [17], pp. 433–450Google Scholar
  11. 11.
    Rogaway, P., Steinberger, J.: Security/Efficiency Tradeoffs for Permutation-Based Hashing. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 220–236. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Stam, M.: Beyond uniformity: Better security/efficiency tradeoffs for compression functions. In: Wagner (ed.) [17], pp. 397–412Google Scholar
  13. 13.
    Stam, M.: Blockcipher-Based Hashing Revisited. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 67–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Steinberger, J.P.: The Collision Intractability of MDC-2 in the Ideal-Cipher Model. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Steinberger, J.: Stam’s Collision Resistance Conjecture. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 597–615. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Tao, T.: The Szemerédi-Trotter theorem and the cell decomposition (2009), http://terrytao.wordpress.com/2009/06/12/the-szemeredi-trotter-theorem-and-the-cell-decomposition/
  17. 17.
    Wagner, D. (ed.): CRYPTO 2008. LNCS, vol. 5157. Springer, Heidelberg (2008)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dimitar Jetchev
    • 1
  • Onur Özen
    • 1
  • Martijn Stam
    • 2
  1. 1.Laboratory for Cryptologic AlgorithmsEPFLSwitzerland
  2. 2.Department of Computer ScienceUniversity of BristolUK

Personalised recommendations