Abstract Model Repair

  • George Chatzieleftheriou
  • Borzoo Bonakdarpour
  • Scott A. Smolka
  • Panagiotis Katsaros
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7226)


Given a Kripke structure M and CTL formula ϕ, where \(M \not\models \varphi\), the problem of Model Repair is to obtain a new model M′ such that M′ ⊧ ϕ. Moreover, the changes made to M to derive M′ should be minimal with respect to all such M′. As in model checking, state explosion can make it virtually impossible to carry out model repair on models with infinite or even large state spaces. In this paper, we present a framework for model repair that uses abstraction refinement to tackle state explosion. Our model-repair framework is based on Kripke Structures, a 3-valued semantics for CTL, and Kripke Modal Transition Systems (KMTSs), and features an abstract-model-repair algorithm for KMTSs. Application to an Automatic Door Opener system is used to illustrate the practical utility of abstract model repair.


Model Repair Model Checking Abstraction Refinement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. Representation and Mind Series. The MIT Press (2008)Google Scholar
  2. 2.
    Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model Repair for Probabilistic Systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Bonakdarpour, B., Ebnenasir, A., Kulkarni, S.S.: Complexity results in revising UNITY programs. ACM Trans. Auton. Adapt. Syst. 4, 5:1–5:28 (2009)Google Scholar
  4. 4.
    Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: Enhancing model checking in verification by AI techniques. Artif. Intell. 112, 57–104 (1999)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Carrillo, M., Rosenblueth, D.A.: Nondeterministic Update of CTL Models by Preserving Satisfaction through Protections. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 60–74. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Carrillo, M., Rosenblueth, D.A.: A method for CTL model update, representing Kripke Structures as table systems. IJPAM 52, 401–431 (2009)MathSciNetGoogle Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16, 1512–1542 (1994)CrossRefGoogle Scholar
  8. 8.
    Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM Trans. Program. Lang. Syst. 19, 253–291 (1997)CrossRefGoogle Scholar
  9. 9.
    de Menezes, M.V., do Lago Pereira, S., de Barros, L.N.: System Design Modification with Actions. In: da Rocha Costa, A.C., Vicari, R.M., Tonidandel, F. (eds.) SBIA 2010. LNCS, vol. 6404, pp. 31–40. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-Based Model Checking Using Modal Transition Systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Godefroid, P., Jagadeesan, R.: Automatic Abstraction Using Generalized Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 137–150. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Guerra, P.T., Wassermann, R.: Revision of CTL Models. In: Kuri-Morales, A., Simari, G.R. (eds.) IBERAMIA 2010. LNCS, vol. 6433, pp. 153–162. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal Transition Systems: A Foundation for Three-Valued Program Analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 155–169. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Kelly, M., Pu, F., Zhang, Y., Zhou, Y.: ACTL Local Model Update with Constraints. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010, Part IV. LNCS, vol. 6279, pp. 135–144. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Samanta, R., Deshmukh, J.V., Emerson, E.A.: Automatic generation of local repairs for boolean programs. In: FMCAD 2008, pp. 27:1–27:10 IEEE Press, Piscataway (2008)Google Scholar
  16. 16.
    Shoham, S., Grumberg, O.: Monotonic Abstraction-Refinement for CTL. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 546–560. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Staber, S., Jobstmann, B., Bloem, R.: Finding and Fixing Faults. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 35–49. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Vechev, M., Yahav, E., Yorsh, G.: Abstraction-guided synthesis of synchronization. In: POPL 2010, pp. 327–338. ACM, New York (2010)Google Scholar
  19. 19.
    Zhang, Y., Ding, Y.: CTL model update for system modifications. J. Artif. Int. Res. 31, 113–155 (2008)MathSciNetMATHGoogle Scholar
  20. 20.
    Zhang, Y., Kelly, M., Zhou, Y.: Foundations of tree-like local model updates. In: ECAI 2010, pp. 615–620. IOS Press, Amsterdam (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • George Chatzieleftheriou
    • 1
  • Borzoo Bonakdarpour
    • 2
  • Scott A. Smolka
    • 3
  • Panagiotis Katsaros
    • 1
  1. 1.Department of InformaticsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.School of Computer ScienceUniversity of WaterlooWaterlooCanada
  3. 3.Department of Computer ScienceStony Brook UniversityStony BrookUSA

Personalised recommendations