Agent-Based Simulation in AgE Framework

  • Łukasz Faber
  • Kamil Piętak
  • Aleksander Byrski
  • Marek Kisiel-Dorohinicki
Part of the Studies in Computational Intelligence book series (SCI, volume 416)

Abstract

The chapter introduces AgE framework as a core for constructing agent based simulation systems. Its features are described against other solutions that may be used in the area of agent-based simulation. The discussion focuses on technical issues—the support for agent-specific services as well as the mechanisms allowing for extensibility and flexibility of the configuration of simulation models and systems. The considerations are illustrated by a simple case study, which aims at showing the differences between AgE and several selected tools for agent-based simulation.

Keywords

Agent Agent Agent Class Simple Agent Schedule Agent Agent Agent Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almasi, G., Gottlieb, A.: Highly Parallel Computing. Benjamin-Cummings Publishers, Redwood City (1989)MATHGoogle Scholar
  2. 2.
    Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies. Prentice-Hall (2003)Google Scholar
  3. 3.
    Banks, J., Carson, J., Nelson, B., Nicol, D.: Discrete-Event System Simulation. Prentice-Hall (2009)Google Scholar
  4. 4.
    Bellifemine, B., Poggi, A., Rimassa, G.: Jade – a fipa-compliant agent framework. In: Proc. of PAAM 1999, London, pp. 97–108 (1999)Google Scholar
  5. 5.
    Bergenti, F., Gleizes, M.P., Zambonelli, F.: Methodologies and Software Engineering for Agent Systems. Kluwer Academic Publishers (2004)Google Scholar
  6. 6.
    Bhasker, J.: A SystemC Primer, 2nd edn. Star Galaxy Publishing (2004)Google Scholar
  7. 7.
    Byrski, A., Kisiel-Dorohinicki, M.: Agent-Based Model and Computing Environment Facilitating the Development of Distributed Computational Intelligence Systems. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5545, pp. 865–874. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Byrski, A., Schaefer, R.: Stochastic model of evolutionary and immunological multi-agent systems: Mutually exclusive actions. Fundamenta Informaticae 95(2-3), 263–285 (2009)MathSciNetMATHGoogle Scholar
  9. 9.
    Carneiro, G., Fontes, H., Ricardo, M.: Fast prototyping of network protocols through ns-3 simulation model reuse. Simulation Modelling Practice and Theory 19(9), 2063–2075 (2011)CrossRefGoogle Scholar
  10. 10.
    Collier, N., North, M.: Repast SC++: A Platform for Large-scale Agent-based Modeling. Wiley (2011)Google Scholar
  11. 11.
    Dahmann, J.: High level architecture for simulation. In: Proc. of First International Workshop on Distributed Interactive Simulation and Real-Time Applications, pp. 9–14 (1997)Google Scholar
  12. 12.
    Davila, J., Uzcategui, M.: Galatea: A multi-agent simulation platform. modeling. In: Proc. of Simulation and Neural Networks (MSNN 2000), Merida, Venezuela, pp. 216–233 (2000)Google Scholar
  13. 13.
    Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multiagents systems. In: Demaseau, Y. (ed.) Proc. of ICMAS 1998 Conference, Paris, pp. 128–135 (1998)Google Scholar
  14. 14.
    Fowler, M.: Inversion of control containers and the dependency injection pattern (2004), http://martinfowler.com/articles/injection.html
  15. 15.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley (1995)Google Scholar
  16. 16.
    Gutknecht, O., Ferber, J.: The madkit agent platform architecture. In: Agents Workshop on Infrastructure for Multi-Agent Systems, pp. 48–55 (2000)Google Scholar
  17. 17.
    Klein, J.: Breve: a 3d environment for the simulation of decentralized systems and articial life. In: Proc. of Artificial Life VIII, the 8th International Conference on the Simulation and Synthesis of Living Systems (2002)Google Scholar
  18. 18.
    Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A multi-agent simulation environment. Simulation: Transactions of the society for Modeling and Simulation International 82(7), 517–527 (2005)CrossRefGoogle Scholar
  19. 19.
    Nikolai, C., Madey, G.: Tools of the trade: A survey of various agent based modeling platforms. Journal of Artificial Societies and Social Simulation 12(2) (2008)Google Scholar
  20. 20.
    North, M., Howe, T., Collier, N., Vos, J.: A declarative model assembly infrastructure for verification and validation. In: Takahashi, S., Sallach, D., Rouchier, J. (eds.) Advancing Social Simulation: The First World Congress, FRG. Springer, Heidelberg (2007)Google Scholar
  21. 21.
    Pidd, M., Cassel, R.A.: Three phase simulation in java. In: Proceedings of the 1998 Winter Simulation Conference, pp. 367–371 (1998)Google Scholar
  22. 22.
    Railsback, S., Lytinen, L.: Agent-based simulation platforms: review and development recommendations. Simulations 82, 609–623 (2006)CrossRefGoogle Scholar
  23. 23.
    Schaefer, R., Byrski, A., Smołka, M.: Stochastic model of evolutionary and immunological multi-agent systems: Parallel execution of local actions. Fundamenta Informaticae 95(2-3), 325–348 (2009)MathSciNetMATHGoogle Scholar
  24. 24.
    Stroock, D.: An Introduction to Markov Processes. Springer (2005)Google Scholar
  25. 25.
    Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)Google Scholar
  26. 26.
    Tesfatsion, L.: Agent-based computational economics: Modeling economies as complex adaptive systems. Information Sciences 149(4), 262–268 (2003)CrossRefGoogle Scholar
  27. 27.
    Ventroux, N., Guerre, A., Sassolas, T., Moutaoukil, L., Blanc, G., Bechara, C., David, R.: Sesam: An mpsoc simulation environment for dynamic application processing. In: CIT, pp. 1880–1886. IEEE Computer Society (2010)Google Scholar
  28. 28.
    Wainer, G., Mosterman, P.: Discrete-Event Modeling and Simulation: Theory and Applications (Computational Analysis, Synthesis, and Design of Dynamic Systems). CRC Press (2010)Google Scholar
  29. 29.
    Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. Knowledge Engineering Review 10(2) (1995)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Łukasz Faber
    • 1
  • Kamil Piętak
    • 1
  • Aleksander Byrski
    • 1
  • Marek Kisiel-Dorohinicki
    • 1
  1. 1.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations