Automatic Generation of Cloze Question Stems

  • Rui Correia
  • Jorge Baptista
  • Maxine Eskenazi
  • Nuno Mamede
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7243)

Abstract

Fill-in-the-blank questions are one of the main assessment devices in REAP.PT tutoring system. The problem of automatically generating the stems, i.e. the sentences that serve as basis to this type of question, has been studied mostly for English, and it remains a challenge for a language as morphologically rich as European Portuguese (EP), for which additional data scarcity problems arise. To address this problem, a supervised classification technique is used to model a classifier that decides whether a given sentence is suitable to be used as a stem in a cloze question. The major focus is put in the feature engineering task, describing both the development of new criteria, and the adaptation to EP of features already explored in the literature. The resulting classifier filters out inadequate stems, allowing experts to build and personalize their instruction focusing on a set of potentially good sentences.

Keywords

Question Generation Cloze Questions CALL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ait-Mokhtar, S., Chanod, J., Roux, C.: A Multi-Input Dependency Parser. In: Proceedings of the Seventh International Workshop on Parsing Technologies, pp. 17–19 (2001)Google Scholar
  2. 2.
    Baptista, J., Costa, N., Guerra, J., Zampieri, M., de Lurdes Cabral, M., Mamede, N.: P-AWL: Academic Word List for Portuguese. In: Computational Processing of the Portuguese Language, pp. 120–123 (2010)Google Scholar
  3. 3.
    Correia, R., Baptista, J., Mamede, N., Trancoso, I., Eskenazi, M.: Automatic Generation of Cloze Question Distractors. In: Proceedings of the Workshop on Second Language Studies: Acquisition, Learning, Education and Technology, Tokyo, Japan (September 2010)Google Scholar
  4. 4.
    Diniz, C.: Um Conversor Baseado em Regras de Transformação Declarativas. Master’s thesis, Instituto Superior Técnico–Universidade Técnica de Lisboa, Lisbon, Portugal (2011)Google Scholar
  5. 5.
    Fellbaum, C.: WordNet: An electronic lexical database. The MIT press (1998)Google Scholar
  6. 6.
    Hatcher, E., Gospodnetic, O.: Lucene in action (2004)Google Scholar
  7. 7.
    Heilman, M., Collins-Thompson, K., Callan, J., Eskenazi, M.: Classroom success of an Intelligent Tutoring System for lexical practice and reading comprehension. In: Ninth International Conference on Spoken Language Processing, Citeseer (2006)Google Scholar
  8. 8.
    Hoshino, A., Nakagawa, H.: A Real-Time Multiple-Choice Question Generation for Language Testing: A Preliminary Study. In: Proceedings of the Second Workshop on Building Educational Applications Using NLP, pp. 17–20. Association for Computational Linguistics (2005)Google Scholar
  9. 9.
    Marujo, L., Mamede, N., Lopes, J., Trancoso, I., Pino, J., Eskenazi, M., Baptista, J., Viana, C.: Porting REAP to European Portuguese. In: International Workshop on Speech and Language Technology in Education, ISCA, Citeseer, Wroxall Abbey Estate, Warwickshire, UK (September 2009)Google Scholar
  10. 10.
    Medeiros, J.: Processamento Morfológico e Correcção Ortográfica do Português. Master’s thesis, Instituto Superior Técnico–Universidade Técnica de Lisboa, Lisbon, Portugal (1995)Google Scholar
  11. 11.
    Mihalcea, R., Tarau, P.: TextRank: Bringing Order Into Texts. In: Proceedings of the Empirical Methods on Natural Language Processing Conference, pp. 404–411. Association for Computational Linguistics, Barcelona (2004)Google Scholar
  12. 12.
    Paulo, J.: PAsMo-Pós Analisador Morfológico. Ph.D. thesis, Instituto Superior Técnico–Universidade Técnica de Lisboa, Lisbon, Portugal (2001)Google Scholar
  13. 13.
    Pino, J., Heilman, M., Eskenazi, M.: A Selection Strategy to Improve Cloze Question Quality. In: Proceedings of the Workshop on Intelligent Tutoring Systems for Ill-Defined Domains. 9th International Conference on Intelligent Tutoring Systems, Citeseer, Montreal, Canada, pp. 22–32 (2008)Google Scholar
  14. 14.
    Ribeiro, R., Oliveira, L., Trancoso, I.: Using Morphossyntactic Information in TTS Systems: Comparing Strategies for European Portuguese. In: Computational Processing of the Portuguese Language, p.195 (2003)Google Scholar
  15. 15.
    Santos, D., Rocha, P.: Evaluating CETEMPúblico, a Free Resource for Portuguese. In: Proceedings of the 39th Annual Meeting on Association for Computational Linguistics, pp. 450–457. Association for Computational Linguistics (2001)Google Scholar
  16. 16.
    Skory, A., Eskenazi, M.: Predicting Cloze Task Quality for Vocabulary Training. In: Proceedings of the NAACL HLT 2010 Fifth Workshop on Innovative Use of NLP for Building Educational Applications, pp. 49–56. Association for Computational Linguistics (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rui Correia
    • 1
    • 3
  • Jorge Baptista
    • 2
  • Maxine Eskenazi
    • 3
  • Nuno Mamede
    • 1
  1. 1.INESC-ID Lisboa / ISTLisboaPortugal
  2. 2.Universidade do AlgarvePortugal
  3. 3.Language Technologies InstituteCarnegie Mellon UniversityUSA

Personalised recommendations