Self-Evolvable Systems pp 65-100 | Cite as
Self-Evolvability for Physical and Chemical Systems
Chapter
Abstract
Self-evolvability potentialities for physical systems are presented using differential models, operads and entropy criteria.
Schemas enumeration, separation trees, process synthesis, cyclic operations, dendritic growth, biochemical substrates for technical information processing, circuits and antennas are the studied systems.
Keywords
Hopf Algebra Binary Tree Young Diagram Technical Information Processing Pressure Swing Adsorption
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- Baez, J., Dolan, J.: Categorification. In: Getzler, E., Kapranov, M. (eds.) Higher Category Theory. Contemp Math. Amer., vol. 230, pp. 1–36, Math. Soc. (1998)Google Scholar
- Baez, J., Shulman, M.: Lectures on n-categories and cohomology. arXiv:math/0608420v2 (2007)Google Scholar
- Barnsley, M.F.: Fractals Everywhere. Academic Press, New York (1993)MATHGoogle Scholar
- Batanin, M.: Confguration spaces from combinatorial, topological and categorical perspectives (2006), http://www.maths.mq.edu.au/street/BatanAustMSMq.pdf
- Bird, J., Layzell, P.: The Evolved Radio and its Implications for Modeling the Evolution of Novel Sensors. In: Proceedings of the Congress on Evolutionary Computation, CEC 2002, pp. 1836–1841 (2002)Google Scholar
- Birge, R.: Protein-based computers. Sci. Am. 272, 90–95 (1995)CrossRefGoogle Scholar
- Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Cartesian Differential Categories. Theories and Applications of Categories 22, 622–672 (2009)MathSciNetMATHGoogle Scholar
- Cariani, P.: On the Design of Devices with Emergent Semantic Functions. PhD. Thesis. Binghamton University, NY (1989)Google Scholar
- Cariani, P.: To evolve an ear: epistemological implications of Gordon Pask’s electrochemical devices. Systems Research 10, 19–33 (1993)CrossRefGoogle Scholar
- Cariani, P.: Design Strategies for Open-Ended Evolution. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI, Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, pp. 94–101. MIT Press, Cambridge (2008)Google Scholar
- Chapoton, F., Livernet, M.: Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not., 395–408 (2001)Google Scholar
- Chiang, A.S.T.: Arithmetic of PSA process scheduling. AIChE J. 34(11), 1910–1912 (1988)CrossRefGoogle Scholar
- Chin, C.Y., Wang, L.N.H.: Simulated Moving Bed Equipment Designs. Separation and Purification Reviews 33(2), 77–155 (2004)CrossRefGoogle Scholar
- Christiansen, A., Skogestad, S., Lien, K.: Complex distillation arrangements: Extending the Petlyuk ideas. Comput. Chem. Eng. 21, S237–S242 (1997)CrossRefGoogle Scholar
- Cockett, J.R.B., Seely, R.A.G.: The Faà di Bruno Construction. Theory and Application of Categories 25, 394–425 (2011)MathSciNetMATHGoogle Scholar
- Colthurst, T.: Fractal Polytopes (1996) (preprint)Google Scholar
- Ferreiro, V., Douglas, J.F., Warren, J., Karim, A.: Growth pulsations in symmetric dendritic crystallization in thin polymer blend films. Phys. Rev. E 65, 051606, 1–16 (2002)Google Scholar
- Fidkowski, Z., Krolikowski, L.: Minimum Energy Requirements of Thermally Coupled Distillation Systems. AIChE J. 33(4), 643–653 (1987)CrossRefGoogle Scholar
- Figueroa, H., Gracia-Bondia, J.M.: Combinatorial Hopf algebras in quantum field theory I. Reviews in Mathematical Physics 17, 881–976 (2005)MathSciNetMATHCrossRefGoogle Scholar
- Foissy, L.: The infinitesimal Hopf algebra and the poset of planar forests. J. Algebraic Comb. 30, 277–309 (2009)MathSciNetMATHCrossRefGoogle Scholar
- Forcey, S., Siehler, J., Seth Sowers, E.: Operads in iterated monoidal categories. Journal of Homotopy and Related Structures 2, 1–43 (2007)MathSciNetMATHGoogle Scholar
- Gianvittorio, J.P.: Fractals, MEMS and FSS Electromagnetic Devices: Miniaturization and Multiple Resonances. PhD. Thesis. UCLA Electrical Engineering Department (August 2003)Google Scholar
- Gianvittorio, J.P., Rahmat-Samii, Y., Romeu, J.: Fractal FSS: various self-similar geometries used for dual-band and dual-polarized FSS. In: Proc. IEEE Antennas and Propagation Soc. Int. Symp., vol. 3, pp. 640–643 (2001)Google Scholar
- Halvorsen, I.J., Skogestad, S.: Energy efficient distillation. Journal of Natural Gas Science and Engng. 3(4), 571–580 (2011)CrossRefGoogle Scholar
- Helfferich, F.G., Klein, G.: Multicomponent Chromatography. Marcel Dekker, NY (1970)Google Scholar
- Hivert, F., Novelli, J.-C., Thibon, J.-Y.: The algebra of binary search trees. Theoretical Computer Science 339, 129–165 (2005)MathSciNetMATHCrossRefGoogle Scholar
- Iordache, O.: Polystochastic Models for Complexity. Springer, Heidelberg (2010)MATHCrossRefGoogle Scholar
- Klavins, E.: Programmable self-assembly. Control Systems Magazine, IEEE 27(4), 43–56 (2007)CrossRefGoogle Scholar
- Leinster, T.: Higher Operads, Higher Categories. Cambridge University Press (2004)Google Scholar
- Linden, D.S.: Optimizing Signal Strength In-Situ Using an Evolvable Antenna System. In: 2002 NASA/DoD Conference on Evolvable Hardware, Alexandria Virginia, USA, July 15-18, pp. 147–151. IEEE Computer Society (2002)Google Scholar
- Loday, J.L., Ronco, M.O.: Hopf algebra and the planar binary trees. Adv. Math. 139(2), 293–309 (1998)MathSciNetMATHCrossRefGoogle Scholar
- MacLane, S.: Categories for the Working Mathematician. Springer, New York (1971)Google Scholar
- Nzeutchap, J.: Dual graded graphs and Fomin’s r-correspondences associated to the Hopf algebras of planar binary trees, quasi-symmetric functions and noncommutative symmetric functions. In: International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC, San Diego (2006)Google Scholar
- Pearse, E.P.J.: Canonical self-similar tilings by iterated function systems. Indiana Univ. Math. J. 56, 3151–3170 (2007)MathSciNetMATHCrossRefGoogle Scholar
- Rhee, H.K., Aris, R., Amundson, N.R.: First Order Partial Differential Equations II. Theory and applications of hyperbolic systems of quasilinear equations. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
- Romeu, J., Blanch, S.: A three-dimensional Hilbert antenna. In: Proc. IEEE Antennas and Propagation Society Int. Symp., San Antonio, TX, vol. 4, pp. 550–553 (June 2002)Google Scholar
- Ruthven, D.M.: Principles of adsorption and adsorption processes. John Wiley, New York (1984)Google Scholar
- Ruthven, D.M., Ching, C.B.: Counter current and simulated counter current adsorption separation processes. Chem. Engng. Sci. 44(5), 1011–1038 (1989)CrossRefGoogle Scholar
- Smith, O.J., Westerberg, A.W.: Mixed-integer programming for pressure swing adsorption cycle scheduling. Chem. Engng. Science 45(9), 2833–2842 (1990)CrossRefGoogle Scholar
- Vsevolodov, N.: Biomolecular Electronics, an Introduction via Photosensitive Proteins. Birkhaeuser, Boston (1998)Google Scholar
- Yang, R.T.: Adsorbents: Fundamentals and Applications. Wiley & Sons, Hoboken, NJ (2003)CrossRefGoogle Scholar
- Zhang, T.H., Zhang, C.P., Fu, G.H., Li, Y.D., Gu, L.Q., Zhang, G.Y., Song, Q.W., Parsons, B., Birge, R.R.: All-optical logic gates using bacteriorhodopsin films. Optical Engng. 39(2), 527–534 (2000)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag GmbH Berlin Heidelberg 2012