Self-Evolvability for Physical and Chemical Systems

Part of the Understanding Complex Systems book series (UCS)

Abstract

Self-evolvability potentialities for physical systems are presented using differential models, operads and entropy criteria.

Schemas enumeration, separation trees, process synthesis, cyclic operations, dendritic growth, biochemical substrates for technical information processing, circuits and antennas are the studied systems.

Keywords

Hopf Algebra Binary Tree Young Diagram Technical Information Processing Pressure Swing Adsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baez, J., Dolan, J.: Categorification. In: Getzler, E., Kapranov, M. (eds.) Higher Category Theory. Contemp Math. Amer., vol. 230, pp. 1–36, Math. Soc. (1998)Google Scholar
  2. Baez, J., Shulman, M.: Lectures on n-categories and cohomology. arXiv:math/0608420v2 (2007)Google Scholar
  3. Barnsley, M.F.: Fractals Everywhere. Academic Press, New York (1993)MATHGoogle Scholar
  4. Batanin, M.: Confguration spaces from combinatorial, topological and categorical perspectives (2006), http://www.maths.mq.edu.au/street/BatanAustMSMq.pdf
  5. Bird, J., Layzell, P.: The Evolved Radio and its Implications for Modeling the Evolution of Novel Sensors. In: Proceedings of the Congress on Evolutionary Computation, CEC 2002, pp. 1836–1841 (2002)Google Scholar
  6. Birge, R.: Protein-based computers. Sci. Am. 272, 90–95 (1995)CrossRefGoogle Scholar
  7. Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Cartesian Differential Categories. Theories and Applications of Categories 22, 622–672 (2009)MathSciNetMATHGoogle Scholar
  8. Cariani, P.: On the Design of Devices with Emergent Semantic Functions. PhD. Thesis. Binghamton University, NY (1989)Google Scholar
  9. Cariani, P.: To evolve an ear: epistemological implications of Gordon Pask’s electrochemical devices. Systems Research 10, 19–33 (1993)CrossRefGoogle Scholar
  10. Cariani, P.: Design Strategies for Open-Ended Evolution. In: Bullock, S., Noble, J., Watson, R., Bedau, M.A. (eds.) Artificial Life XI, Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, pp. 94–101. MIT Press, Cambridge (2008)Google Scholar
  11. Chapoton, F., Livernet, M.: Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not., 395–408 (2001)Google Scholar
  12. Chiang, A.S.T.: Arithmetic of PSA process scheduling. AIChE J. 34(11), 1910–1912 (1988)CrossRefGoogle Scholar
  13. Chin, C.Y., Wang, L.N.H.: Simulated Moving Bed Equipment Designs. Separation and Purification Reviews 33(2), 77–155 (2004)CrossRefGoogle Scholar
  14. Christiansen, A., Skogestad, S., Lien, K.: Complex distillation arrangements: Extending the Petlyuk ideas. Comput. Chem. Eng. 21, S237–S242 (1997)CrossRefGoogle Scholar
  15. Cockett, J.R.B., Seely, R.A.G.: The Faà di Bruno Construction. Theory and Application of Categories 25, 394–425 (2011)MathSciNetMATHGoogle Scholar
  16. Colthurst, T.: Fractal Polytopes (1996) (preprint)Google Scholar
  17. Ferreiro, V., Douglas, J.F., Warren, J., Karim, A.: Growth pulsations in symmetric dendritic crystallization in thin polymer blend films. Phys. Rev. E 65, 051606, 1–16 (2002)Google Scholar
  18. Fidkowski, Z., Krolikowski, L.: Minimum Energy Requirements of Thermally Coupled Distillation Systems. AIChE J. 33(4), 643–653 (1987)CrossRefGoogle Scholar
  19. Figueroa, H., Gracia-Bondia, J.M.: Combinatorial Hopf algebras in quantum field theory I. Reviews in Mathematical Physics 17, 881–976 (2005)MathSciNetMATHCrossRefGoogle Scholar
  20. Foissy, L.: The infinitesimal Hopf algebra and the poset of planar forests. J. Algebraic Comb. 30, 277–309 (2009)MathSciNetMATHCrossRefGoogle Scholar
  21. Forcey, S., Siehler, J., Seth Sowers, E.: Operads in iterated monoidal categories. Journal of Homotopy and Related Structures 2, 1–43 (2007)MathSciNetMATHGoogle Scholar
  22. Gianvittorio, J.P.: Fractals, MEMS and FSS Electromagnetic Devices: Miniaturization and Multiple Resonances. PhD. Thesis. UCLA Electrical Engineering Department (August 2003)Google Scholar
  23. Gianvittorio, J.P., Rahmat-Samii, Y., Romeu, J.: Fractal FSS: various self-similar geometries used for dual-band and dual-polarized FSS. In: Proc. IEEE Antennas and Propagation Soc. Int. Symp., vol. 3, pp. 640–643 (2001)Google Scholar
  24. Halvorsen, I.J., Skogestad, S.: Energy efficient distillation. Journal of Natural Gas Science and Engng. 3(4), 571–580 (2011)CrossRefGoogle Scholar
  25. Helfferich, F.G., Klein, G.: Multicomponent Chromatography. Marcel Dekker, NY (1970)Google Scholar
  26. Hivert, F., Novelli, J.-C., Thibon, J.-Y.: The algebra of binary search trees. Theoretical Computer Science 339, 129–165 (2005)MathSciNetMATHCrossRefGoogle Scholar
  27. Iordache, O.: Polystochastic Models for Complexity. Springer, Heidelberg (2010)MATHCrossRefGoogle Scholar
  28. Klavins, E.: Programmable self-assembly. Control Systems Magazine, IEEE 27(4), 43–56 (2007)CrossRefGoogle Scholar
  29. Leinster, T.: Higher Operads, Higher Categories. Cambridge University Press (2004)Google Scholar
  30. Linden, D.S.: Optimizing Signal Strength In-Situ Using an Evolvable Antenna System. In: 2002 NASA/DoD Conference on Evolvable Hardware, Alexandria Virginia, USA, July 15-18, pp. 147–151. IEEE Computer Society (2002)Google Scholar
  31. Loday, J.L., Ronco, M.O.: Hopf algebra and the planar binary trees. Adv. Math. 139(2), 293–309 (1998)MathSciNetMATHCrossRefGoogle Scholar
  32. MacLane, S.: Categories for the Working Mathematician. Springer, New York (1971)Google Scholar
  33. Nzeutchap, J.: Dual graded graphs and Fomin’s r-correspondences associated to the Hopf algebras of planar binary trees, quasi-symmetric functions and noncommutative symmetric functions. In: International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC, San Diego (2006)Google Scholar
  34. Pearse, E.P.J.: Canonical self-similar tilings by iterated function systems. Indiana Univ. Math. J. 56, 3151–3170 (2007)MathSciNetMATHCrossRefGoogle Scholar
  35. Rhee, H.K., Aris, R., Amundson, N.R.: First Order Partial Differential Equations II. Theory and applications of hyperbolic systems of quasilinear equations. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  36. Romeu, J., Blanch, S.: A three-dimensional Hilbert antenna. In: Proc. IEEE Antennas and Propagation Society Int. Symp., San Antonio, TX, vol. 4, pp. 550–553 (June 2002)Google Scholar
  37. Ruthven, D.M.: Principles of adsorption and adsorption processes. John Wiley, New York (1984)Google Scholar
  38. Ruthven, D.M., Ching, C.B.: Counter current and simulated counter current adsorption separation processes. Chem. Engng. Sci. 44(5), 1011–1038 (1989)CrossRefGoogle Scholar
  39. Smith, O.J., Westerberg, A.W.: Mixed-integer programming for pressure swing adsorption cycle scheduling. Chem. Engng. Science 45(9), 2833–2842 (1990)CrossRefGoogle Scholar
  40. Vsevolodov, N.: Biomolecular Electronics, an Introduction via Photosensitive Proteins. Birkhaeuser, Boston (1998)Google Scholar
  41. Yang, R.T.: Adsorbents: Fundamentals and Applications. Wiley & Sons, Hoboken, NJ (2003)CrossRefGoogle Scholar
  42. Zhang, T.H., Zhang, C.P., Fu, G.H., Li, Y.D., Gu, L.Q., Zhang, G.Y., Song, Q.W., Parsons, B., Birge, R.R.: All-optical logic gates using bacteriorhodopsin films. Optical Engng. 39(2), 527–534 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.PolystochasticMontrealCanada

Personalised recommendations