Verified Resource Guarantees for Heap Manipulating Programs

  • Elvira Albert
  • Richard Bubel
  • Samir Genaim
  • Reiner Hähnle
  • Guillermo Román-Díez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7212)


Program properties that are automatically inferred by static analysis tools are generally not considered to be completely trustworthy, unless the tool implementation or the results are formally verified. Here we focus on the formal verification of resource guarantees inferred by automatic cost analysis. Resource guarantees ensure that programs run within the indicated amount of resources which may refer to memory consumption, to number of instructions executed, etc. In previous work we studied formal verification of inferred resource guarantees that depend only on integer data. In realistic programs, however, resource consumption is often bounded by the size of heap-allocated data structures. Bounding their size requires to perform a number of structural heap analyses. The contributions of this paper are (i) to identify what exactly needs to be verified to guarantee sound analysis of heap manipulating programs, (ii) to provide a suitable extension of the program logic used for verification to handle structural heap properties in the context of resource guarantees, and (iii) to improve the underlying theorem prover so that proof obligations can be automatically discharged.


Program Logic Ranking Function Dynamic Logic Proof Obligation Symbolic Execution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in Static Cost Analysis. Journal of Automated Reasoning 46(2), 161–203 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Albert, E., Bubel, R., Genaim, S., Hähnle, R., Puebla, G., Román-Díez, G.: Verified Resource Guarantees using COSTA and KeY. In: Proc. of PEPM 2011, pp. 73–76. ACM Press (2011)Google Scholar
  4. 4.
    Ball, T., Bounimova, E., Levin, V., Kumar, R., Lichtenberg, J.: The Static Driver Verifier Research Platform. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 119–122. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Crary, K., Weirich, S.: Resource Bound Certification. In: POPL 2005, pp. 184–198. ACM Press (2000)Google Scholar
  7. 7.
    de Dios, J., Peña, R.: Certification of Safe Polynomial Memory Bounds. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 184–199. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deductive Program Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 173–177. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Genaim, S., Zanardini, D.: The Acyclicity Inference of COSTA. In: Workshop on Termination (WST 2010) (July 2010)Google Scholar
  10. 10.
    Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: precise and efficient static estimation of program computational complexity. In: Proc. of POPL 2009, pp. 127–139. ACM (2009)Google Scholar
  11. 11.
    Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polynomial Potential. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 287–306. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Leino, K.R.M.: Dafny: An Automatic Program Verifier for Functional Correctness. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Necula, G.: Proof-Carrying Code. In: POPL 1997, ACM Press (1997)Google Scholar
  14. 14.
    Pnueli, A., Siegel, M.D., Singerman, E.: Translation Validation. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Secci, S., Spoto, F.: Pair-Sharing Analysis of Object-Oriented Programs. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 320–335. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Smans, J., Jacobs, B., Piessens, F., Schulte, W.: An Automatic Verifier for Java-Like Programs Based on Dynamic Frames. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 261–275. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Spoto, F., Mesnard, F., Payet, É.: A termination analyzer for java bytecode based on path-length. ACM Trans. Program. Lang. Syst. 32(3) (2010)Google Scholar
  18. 18.
    Weiß, B.: Deductive Verification of Object-Oriented Software: Dynamic Frames, Dynamic Logic and Predicate Abstraction. PhD thesis, KIT (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Elvira Albert
    • 2
  • Richard Bubel
    • 1
  • Samir Genaim
    • 2
  • Reiner Hähnle
    • 1
  • Guillermo Román-Díez
    • 3
  1. 1.CSEChalmers University of TechnologySweden
  2. 2.DSICComplutense University of Madrid (UCM)Spain
  3. 3.DLSIISTechnical University of Madrid (UPM)Spain

Personalised recommendations