A Process Algebra for Wireless Mesh Networks

  • Ansgar Fehnker
  • Rob van Glabbeek
  • Peter Höfner
  • Annabelle McIver
  • Marius Portmann
  • Wee Lum Tan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7211)


We propose a process algebra for wireless mesh networks that combines novel treatments of local broadcast, conditional unicast and data structures. In this framework, we model the Ad-hoc On-Demand Distance Vector (AODV) routing protocol and (dis)prove crucial properties such as loop freedom and packet delivery.


Data Packet Transmission Range Operational Semantic Wireless Mesh Network Parallel Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kernel AODV (v. 2.2.2), NIST, (accessed January 6, 2012)
  2. 2.
    AODV-UU: An implementation of the AODV routing protocol (IETF RFC 3561), (accessed January 6, 2012)
  3. 3.
    Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for distance vector routing protocols. J. ACM 49(4), 538–576 (2002), MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cleaveland, R., Lüttgen, G., Natarajan, V.: Priority in process alegbra. In: Handbook of Process Algebra, ch.12, pp. 711–765. Elsevier (2001)Google Scholar
  5. 5.
    Cranen, S., Mousavi, M.R., Reniers, M.A.: A Rule Format for Associativity. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 447–461. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A., Portmann, M., Tan, W.L.: A process algebra for wireless mesh networks used for modelling, verifying and analysing AODV. Tech. Rep. 5513, NICTA (2012),
  7. 7.
    Ghassemi, F., Fokkink, W.J., Movaghar, A.: Restricted broadcast process theory. In: Proc. IEEE SEFM 2008 (2008)Google Scholar
  8. 8.
    Godskesen, J.C.: A Calculus for Mobile Ad Hoc Networks. In: Murphy, A.L., Ryan, M. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132–150. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Groote, J.F., Ponse, A.: The syntax and semantics of μCRL. In: Algebra of Communicating Processes 1994. Workshops in Computing, pp. 26–62. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  10. 10.
    Hiertz, G.R., Denteneer, D., Max, S., Taori, R., Cardona, J., Berlemann, L., Walke, B.: IEEE 802.11s: the WLAN mesh standard. IEEE Wireless Communications 17(1), 104–111 (2010), CrossRefGoogle Scholar
  11. 11.
    Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI-Quarterly 2(3), 219–246 (1989); centrum voor Wiskunde en Informatica, Amsterdam, The NetherlandsMathSciNetzbMATHGoogle Scholar
  12. 12.
    Merro, M.: An observational theory for mobile ad hoc networks. Inf. Comput. 207(2), 194–208 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Mezzetti, N., Sangiorgi, D.: Towards a calculus for wireless systems. Electr. Notes Theor. Comput. Sci. 158, 331–353 (2006)CrossRefGoogle Scholar
  14. 14.
    Miskovic, S., Knightly, E.W.: Routing primitives for wireless mesh networks: Design, analysis and experiments. In: IEEE INFOCOM, pp. 2793–2801 (2010),
  15. 15.
    Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks. Theor. Comput. Sci. 367, 203–227 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Perkins, C., Belding-Royer, E., Das, S.: Ad hoc on-demand distance vector (AODV) routing. RFC 3561 (2003),
  17. 17.
    Plotkin, G.: A structural approach to operational semantics. The Journal of Logic and Algebraic Programming 60- 61, 17–139 (2004) (originally appeared in 1981)CrossRefGoogle Scholar
  18. 18.
    Prasad, K.V.S.: A calculus of broadcasting systems. Sci. Comput. Program. 25(2-3), 285–327 (1995)CrossRefGoogle Scholar
  19. 19.
    de Simone, R.: Higher-level synchronising devices in Meije-SCCS. Theor. Comput. Sci. 37, 245–267 (1985)zbMATHCrossRefGoogle Scholar
  20. 20.
    Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc networks. Science of Computer Programming 75, 440–469 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Zhou, M., Yang, H., Zhang, X., Wang, J.: The proof of AODV loop freedom. In: Proc. IEEE WCSP (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ansgar Fehnker
    • 1
    • 4
  • Rob van Glabbeek
    • 1
    • 4
  • Peter Höfner
    • 1
    • 4
  • Annabelle McIver
    • 2
    • 1
  • Marius Portmann
    • 1
    • 3
  • Wee Lum Tan
    • 1
    • 3
  1. 1.NICTAAustralia
  2. 2.Department of ComputingMacquarie UniversityAustralia
  3. 3.School of ITEEThe University of QueenslandAustralia
  4. 4.Computer Science and EngineeringUniversity of New South WalesAustralia

Personalised recommendations