Tackling Misleading Peptide Regulation Fold Changes in Quantitative Proteomics

  • Christoph Gernert
  • Evelin Berger
  • Frank Klawonn
  • Lothar Jänsch
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 154)

Abstract

Relative quantification in proteomics is a common strategy to analyze differences in biological samples and time series experiments. However, the resulting fold changes can give a wrong picture of the peptide amounts contained in the compared samples.

Fold changes hide the actual amounts of peptides. In addition posttranslational modifications can redistribute over multiple peptides, covering the same protein sequence, detected by mass spectrometry.

To circumvent these effects, a method was established to estimate the involved peptide amounts. The estimation of the theoretical peptide amount is based on the behavior of the peptide fold changes, in which lower peptide amounts are more susceptible to quantitative changes in a given sequence segment.

This method was successfully applied to a time-resolved analysis of growth receptor signaling in human prostate cancer cells. The theoretical peptide amounts show that high peptide fold changes can easily be nullified by the effects stated above.

Keywords

Fold Change Peptide Regulation Human Prostate Cancer Cell Quantitative Proteomics Peptide Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adachi, J., Kumar, C., Zhang, Y., Olsen, J.V., Mann, M.: The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol. 7, R80 (2006)Google Scholar
  2. 2.
    Alves, G., Ogurtsov, A.Y., Kwok, S., Wu, W.W., Wang, G., Shen, R.F., Yu, Y.K.: Detection of co-eluted peptides using database search methods. Biol. Direct 3, 27 (2008)CrossRefGoogle Scholar
  3. 3.
    Bodenmiller, B., Aebersold, R.: Quantitative Analysis of Protein Phosphorylation on a System-Wide Scale by Mass Spectrometry-Based Proteomics, vol. 470, pp. 317–334. Elsevier (2010)Google Scholar
  4. 4.
    Boehm, A.M., Pütz, S., Altenhöfer, D., Sickmann, A., Falk, M.: Precise protein quantification based on peptide quantification using iTRAQ. BMC Bioinformatics 8, 214 (2007)CrossRefGoogle Scholar
  5. 5.
    de Godoy, L., Olsen, J., de Souza, G., Li, G., Mortensen, P., Mann, M.: Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biology 7(6), R50 (2006)Google Scholar
  6. 6.
    Grosse-Coosmann, F., Boehm, A.M., Sickmann, A.: Efficient analysis and extraction of MS/MS result data from mascot result files. BMC bioinformatics 6 (2005)Google Scholar
  7. 7.
    Guo, X., Bruist, M.F., Davis, D.L., Bentzley, C.M.: Secondary structural characterization of oligonucleotide strands using electrospray ionization mass spectrometry. Nucleic Acids Res. 33, 3659–3666 (2005)CrossRefGoogle Scholar
  8. 8.
    Hundertmark, C., Fischer, R., Reinl, T., May, S., Klawonn, F., Jänsch, L.: Ms-specific noise model reveals the potential of itraq in quantitative proteomics. Bioinformatics 25, 1004–1011 (2009)CrossRefGoogle Scholar
  9. 9.
    Jiang, X., Jiang, X., Han, G., Ye, M., Zou, H.: Optimization of filtering criterion for SEQUEST database searching to improve proteome coverage in shotgun proteomics. BMC Bioinformatics 8, 323 (2007)CrossRefGoogle Scholar
  10. 10.
    Liu, J., Bell, A.W., Bergeron, J.J., Yanofsky, C.M., Carrillo, B., Beaudrie, C.E., Kearney, R.E.: Methods for peptide identification by spectral comparison. Proteome Science 5(1), 3 (2007)CrossRefGoogle Scholar
  11. 11.
    Milano, A., Pendergrass, S.A., Sargent, J.L., George, L.K., McCalmont, T.H., Connolly, M.K., Whitfield, M.L.: Molecular subsets in the gene expression signatures of scleroderma skin. PLoS ONE 3(7), e2696 (2008)CrossRefGoogle Scholar
  12. 12.
    Reinl, T., Nimtz, M., Hundertmark, C., Johl, T., Kéri, G., Wehland, J., Daub, H., Jänsch, L.: Quantitative phosphokinome analysis of the met pathway activated by the invasin internalin b from listeria monocytogenes. Mol. Cell Proteomics 8, 2778–2795 (2009)CrossRefGoogle Scholar
  13. 13.
    Stigter, E.C., de Jong, G.J., van Bennekom, W.P.: Development of an open-tubular trypsin reactor for on-line digestion of proteins. Anal. Bioanal. Chem. 389, 1967–1977 (2007)CrossRefGoogle Scholar
  14. 14.
    Tiku, M.L., Narla, H., Jain, M., Yalamanchili, P.: Glucosamine prevents in vitro collagen degradation in chondrocytes by inhibiting advanced lipoxidation reactions and protein oxidation. Arthritis Res. Ther. 9, R76 (2007)CrossRefGoogle Scholar
  15. 15.
    Villén, J., Gygi, S.P.: The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nature Protocols 3(10), 1630–1638 (2008)CrossRefGoogle Scholar
  16. 16.
    Webb-Robertson, B.J.M., Matzke, M.M., Jacobs, J.M., Pounds, J.G., Waters, K.M.: A statistical selection strategy for normalization procedures in lc-ms proteomics experiments through dataset-dependent ranking of normalization scaling factors. PROTEOMICS (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christoph Gernert
    • 1
  • Evelin Berger
    • 1
  • Frank Klawonn
    • 2
  • Lothar Jänsch
    • 1
  1. 1.Helmholtz Centre for Infection ResearchBraunschweigGermany
  2. 2.Ostfalia University of Applied Science, Helmholtz Centre for Infection ResearchWolfenbuttelGermany

Personalised recommendations