On the Development of a Pipeline for the Automatic Detection of Positively Selected Sites

  • David Reboiro-Jato
  • Miguel Reboiro-Jato
  • Florentino Fdez-Riverola
  • Nuno A. Fonseca
  • Jorge Vieira
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 154)


In this paper we present the ADOPS (Automatic Detection Of Positively Selected Sites) software that is ideal for research projects involving the analysis of tens of genes. ADOPS is a novel software pipeline that is being implemented with the goal of providing an automatic and flexible tool for detecting positively selected sites given a set of unaligned nucleotide sequence data.


Positively selected sites Adaptation Phylogenetics Software integration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fu, Y.X.: Statistical Tests of Neutrality of Mutations Against Population Growth, Hitchhiking and Background Selection. Genetics 147(2), 915–925 (1997)Google Scholar
  2. 2.
    Hudson, R.R., Kreitman, M., Aguade, M.: A Test of Neutral Molecular Evolution Based on Nucleotide Data. Genetics 116(1), 153–159 (1987)Google Scholar
  3. 3.
    Tajima, F.: Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics 123(3), 585–595 (1989)MathSciNetGoogle Scholar
  4. 4.
    Yang, Z., Nielsen, R.: Synonymous and nonsynonymous rate variation in nuclear genes of mammals. Journal of Molecular Evolution 46, 409–418 (1998)CrossRefGoogle Scholar
  5. 5.
    Pond, S.L.K., Frost, S.D.W., Muse, S.V.: HyPhy: hypothesis testing using phylogenies. Bioinformatics 21(5), 676–679 (2005)CrossRefGoogle Scholar
  6. 6.
    Guirao-Rico, S., Aguad, M.: Molecular evolution of the ligands of the insulin-signaling pathway: dilp genes in the genus Drosophila. Mol. Biol. Evol. 28(5), 1557–1560 (2011)CrossRefGoogle Scholar
  7. 7.
    Reis, M., Sousa-Guimares, S., Vieira, C., Sunkel, C., Vieira, J.: Drosophila genes that affect meiosis duration are among the meiosis related genes that are more often found duplicated. Plos One 10(3), e17512 (2011)Google Scholar
  8. 8.
    Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology 302(1), 205–217 (2000)CrossRefGoogle Scholar
  9. 9.
    Huelsenbeck, J.P., Ronquist, F.: MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17(8), 754–755 (2001)CrossRefGoogle Scholar
  10. 10.
    Yang, Z.: PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution 24 (2007)Google Scholar
  11. 11.
    Glez-Peña, D., Gómez-López, G., Reboiro-Jato, M., Fdez-Riverola, F., Pisano, D.G.: PileLine: a toolbox to handle genome position information in next-generation sequencing studies. BMC Bioinformatics 12(1) (2011)Google Scholar
  12. 12.
    Glez-Peña, D., Reboiro-Jato, M., Maia, P., Rocha, M., Díaz, F., Fdez-Riverola, F.: AIBench: A rapid application development framework for translational research in biomedicine. Computer Methods and Programs in Biomedicine 98, 191–203 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David Reboiro-Jato
    • 1
  • Miguel Reboiro-Jato
    • 1
  • Florentino Fdez-Riverola
    • 1
  • Nuno A. Fonseca
    • 2
    • 3
  • Jorge Vieira
    • 4
  1. 1.Departamento de InformáticaUniversidade de VigoVigoSpain
  2. 2.CRACS-INESC Porto LAUniversidade do PortoPortoPortugal
  3. 3.EMBL-European Bioinformatics InstituteCambridgeUK
  4. 4.Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal

Personalised recommendations