Extraterrestrial He in Sediments: From Recorder of Asteroid Collisions to Timekeeper of Global Environmental Changes

  • David McGeeEmail author
  • Sujoy Mukhopadhyay
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)


Most 3He in deep-sea sediments is derived from fine-grained extraterrestrial matter known as interplanetary dust particles (IDPs). These particles, typically <50 μm in diameter, are sufficiently small to retain solar wind-implanted He with high 3He/4He ratios during atmospheric entry heating. This extraterrestrial 3He (3HeET) is retained in sediments for geologically long durations, having been detected in sedimentary rocks as old as 480 Ma. As a tracer of fine-grained extraterrestrial material, 3HeET offers unique insights into solar system events associated with increased IDP fluxes, including asteroid break-up events and comet showers. Studies have used 3HeET to identify IDP flux changes associated with a Miocene asteroid break-up event and a likely comet shower in the Eocene. During much of the Cenozoic, 3HeET fluxes have remained relatively constant over million-year timescales, enabling 3HeET to be used as a constant flux proxy for calculating sedimentary mass accumulation rates and constraining sedimentary age models. We review studies employing 3HeET-based accumulation rates to estimate the duration of carbonate dissolution events associated with the K/Pg boundary and Paleocene-Eocene Thermal Maximum. Additionally, 3HeET has been used to quantify sub-orbital variability in fluxes of paleoproductivity proxies and windblown dust. In order to better interpret existing records and guide the application of 3HeET in novel settings, future work requires constraining the carrier phase(s) of 3HeET responsible for long-term retention in sediments, better characterizing the He isotopic composition of the terrigenous end-member, and understanding why observed extraterrestrial 3He fluxes do not match the predicted variability of IDP accretion rate over orbital timescales.



The authors would like to thank Ken Farley for reviewing this chapter.


  1. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the cretaceous-tertiary extinction: experimental results and theoretical interpretation. Science 208(4448):1095–1108Google Scholar
  2. Amari S, Ozima M (1985) Search for the origin of exotic helium in deep-sea sediments. Nature 317(6037):520–522Google Scholar
  3. Amari S, Ozima M (1988) Extraterrestrial noble gases in deep-sea sediments. Geochim Cosmochim Acta 52(5):1087–1095Google Scholar
  4. Andrews JN (1985) The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chem Geol 49:339–351Google Scholar
  5. Basu S, Stuart FM, Klemm V, Korschinek G, Knie K, Hein JR (2006) Helium isotopes in ferromanganese crusts from the central Pacific Ocean. Geochim Cosmochim Acta 70(15):3996–4006. doi: 10.1016/j.gca.2006.05.015CrossRefGoogle Scholar
  6. Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the permian-triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science 291:1530–1533Google Scholar
  7. Benkert JP, Baur H, Signer P, Wieler R (1993) He, Ne, and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes. J Geophys Res 98(E7):13147–13162Google Scholar
  8. Bradley JP, Sandford SA, Walker RM (1988) Interplanetary dust particles. In: Kerridge J, Mathews MS (eds) Meteorites and the Solar System. University of Arizona Press, Tucson, pp 861–895Google Scholar
  9. Brook EJ, Kurz MD, Curtice J (2009) Flux and size fractionation of He-3 in interplanetary dust from Antarctic ice core samples. Earth Planet Sci Lett 286(3–4):565–569. doi: 10.1016/J.Epsl.2009.07.024CrossRefGoogle Scholar
  10. Brook EJ, Kurz MD, Curtice J, Cowburn S (2000) Accretion of interplanetary dust in polar ice. Geophys Res Lett 27(19):3145–3148Google Scholar
  11. Brownlee DE (1985) Cosmic dust: collection and research. Ann Rev Earth Planet Sci 13:147–173Google Scholar
  12. Burns JA, Lamy PL, Soter S (1979) Radiation forces on small particles in the solar-system. Icarus 40(1):1–48Google Scholar
  13. Dermott SF, Grogan K, Durda DD, Jayaraman S, Kehoe TJJ, Kortenkamp SJ, Wyatt MC (2001) Orbital evolution of interplanetary dust. In: Grün E, Gustafson BÅS, Dermott SF, Fechtig H (eds) Interplanetary dust. Springer, Berlin, pp 569–641Google Scholar
  14. Du XQ, Wang YH, Ren JG, Ye XR, Lu HY (2007) Helium isotope investigation on magnetic reversal boundaries of loess-paleosol sequence at Luochuan, central Chinese Loess Plateau. Chin Sci Bull 52(17):2407–2412Google Scholar
  15. Farley KA (1995) Cenozoic variations in the flux of interplanetary dust recorded by He-3 in a deep-sea sediment. Nature 376(6536):153–156Google Scholar
  16. Farley KA (2000) Extraterrestrial helium in seafloor sediments: identification, characteristics, and accretion rate over geologic time. In: Peucker-Ehrenbrink B, Schmitz B (eds) Accretion of extraterrestrial matter throughout Earth’s history. Kluwer, New York, pp 179–204Google Scholar
  17. Farley KA, Eltgroth SF (2003) An alternative age model for the Paleocene-Eocene thermal maximum using extraterrestrial He-3. Earth Planet Sci Lett 208(3–4):135–148. doi: 10.1016/S0012-821x(03)00017-7CrossRefGoogle Scholar
  18. Farley KA, Love SG, Patterson DB (1997) Atmospheric entry heating and helium retentivity of interplanetary dust particles. Geochim Cosmochim Acta 61(11):2309–2316Google Scholar
  19. Farley KA, Montanari A, Shoemaker EM, Shoemaker CS (1998) Geochemical evidence for a comet shower in the late eocene. Science 280(5367):1250–1253Google Scholar
  20. Farley KA, Mukhopadhyay S (2001) An extraterrestrial impact at the permian-triassic boundary? Science 293:2343Google Scholar
  21. Farley KA, Patterson DB (1995) A 100-Kyr periodicity in the flux of extraterrestrial He-3 to the sea floor. Nature 378(6557):600–603Google Scholar
  22. Farley KA, Vokrouhlicky D, Bottke WF, Nesvorný D (2006) A late miocene dust shower from the break-up of an asteroid in the main belt. Nature 439(7074):295–297. doi: 10.1038/Nature04391CrossRefGoogle Scholar
  23. Farley KA, Ward P, Garrison G, Mukhopadhyay S (2005) Absence of extraterrestrial He-3 in permian-triassic age sedimentary rocks. Earth Planet Sci Lett 240(2):265–275. doi: 10.1016/J.Epsl.2005.09.054CrossRefGoogle Scholar
  24. Fireman EL, Kistner GA (1961) The nature of dust collected at high altitudes. Geochim Cosmochim Acta 24:10–22Google Scholar
  25. Flynn GJ (1989) Atmospheric entry heating: a criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus 77(2):287–310Google Scholar
  26. Fourre E (2004) A 475 kyr record of extraterrestrial 3He and 230Th in North Atlantic sediments: caveats to derive MAR from these tracers. Eos Trans AGU 85(47):Fall Meet Suppl, Abstract PP33A–0910 Google Scholar
  27. Francois R, Frank M, van der Loeff MMR, Bacon MP (2004) Th-230 normalization: an essential tool for interpreting sedimentary fluxes during the late quaternary. Paleoceanography 19(1):PA1018. Doi: 10.1029/2003PA000994Google Scholar
  28. Fraundorf P, Brownlee DE, Walker RM (1982) Laboratory studies of interplanetary dust. In: Wilkening LL (ed) Comets. University of Arizona Press, Tucson, pp 383–409Google Scholar
  29. Fredriksson K (1956) Cosmic Spherules in Deep-Sea Sediments. Nature 177(4497):32–33Google Scholar
  30. Fredriksson K, Gowdy R (1963) Meteoric debris from the southern California desert. Geochim Cosmochim Acta 27:241–243Google Scholar
  31. Fredriksson K, Martin LR (1963) The origin of black spherules found in Pacific islands, deep-sea sediments, and Antarctic ice. Geochim Cosmochim Acta 27:245–248Google Scholar
  32. Fukumoto H, Nagao K, Matsuda J (1986) Noble gas studies on the host phase of high 3He/4He ratios in deep-sea sediments. Geochim Cosmochim Acta 50:2245–2253Google Scholar
  33. Futagami T, Ozima M, Nakamura Y (1990) Helium ion implantation into minerals. Earth Planet Sci Lett 101(1):63–67Google Scholar
  34. Gladman BJ, Migliorini F, Morbidelli A, Zappala V, Michel P, Cellino A, Froeschle C, Levison HF, Bailey M, Duncan M (1997) Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277(5323):197–201Google Scholar
  35. Grimberg A, Baur H, Bochsler P, Bühler F, Burnett DS, Hays CC, Heber VS, Jurewicz AJG, Wieler R (2006) Solar wind neon from Genesis: implications for the lunar noble gas record. Science 314:1133–1135. doi: 10.1126/science.1133568CrossRefGoogle Scholar
  36. Higgins SM, Anderson RF, Marcantonio F, Schlosser P, Stute M (2002) Sediment focusing creates 100-ka cycles in interplanetary dust accumulation on the Ontong Java Plateau. Earth Planet Sci Lett 203(1):383–397Google Scholar
  37. Hiyagon H (1994) Retention of solar helium and neon in IDPs in deep-sea sediments. Science 263:1257–1259Google Scholar
  38. Hut P, Alvarez W, Elder WP, Hansen T, Kauffman EG, Keller G, Shoemaker EM, Weissman PR (1987) Comet showers as a cause of mass extinctions. Nature 329(6135):118–126Google Scholar
  39. Kortenkamp SJ, Dermott SF (1998a) A 100,000-year periodicity in the accretion rate of interplanetary dust. Science 280(5365):874–876Google Scholar
  40. Kortenkamp SJ, Dermott SF (1998b) Accretion of interplanetary dust particles by the Earth. Icarus 135(2):469–495Google Scholar
  41. Kurz MD, Kenna TC, Lassiter JC, Depaola DJ (1996) Helium isotopic evolution of Mauna Kea: first results from the 1 km drill core. J Geophys Res 101:11781–11791Google Scholar
  42. Kyte FT, Leinen M, Heath GR, Zhou L (1993) Cenozoic sedimentation history of the central North Pacific: Inferences from the elemental geochemistry of core LL44-GPC3. Geochim Cosmochim Acta 57(8):1719–1740Google Scholar
  43. Laevastu T, Mellis O (1955) Extraterrestrial material in deep-sea deposits. Trans Am Geophys Union 36(3):385–389Google Scholar
  44. Lal D, Jull AJT (2005) On the fluxes and fates of He-3 accreted by the Earth with extraterrestrial particles. Earth Planet Sci Lett 235(1–2):375–390. doi: 10.1016/J.Espl.2005.04.011CrossRefGoogle Scholar
  45. Love SG, Brownlee DE (1991) Heating and thermal transformation of micrometeroids entering the Earth’s atmosphere. Icarus 89(1):26–43Google Scholar
  46. Love SG, Brownlee DE (1993) A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262(5133):550–553Google Scholar
  47. Love SG, Joswiak DJ, Brownlee DE (1994) Densities of stratospheric micrometeorites. Icarus 111(1):227–236Google Scholar
  48. Mamyrin BA, Tolstikhin IN (1984) Helium isotopes in nature. Elsevier, AmsterdamGoogle Scholar
  49. Marcantonio F, Anderson RF, Higgins S, Fleisher MQ, Stute M, Schlosser P (2001a) Abrupt intensification of the SW Indian Ocean monsoon during the last deglaciation: constraints from Th, Pa, and He isotopes. Earth Planet Sci Lett 184(2):505–514Google Scholar
  50. Marcantonio F, Anderson RF, Higgins S, Stute M, Schlosser P, Kubik P (2001b) Sediment focusing in the central equatorial Pacific Ocean. Paleoceanography 16(3):260–267Google Scholar
  51. Marcantonio F, Anderson RF, Stute M, Kumar N, Schlosser P, Mix A (1996) Extraterrestrial He-3 as a tracer of marine sediment transport and accumulation. Nature 383(6602):705–707Google Scholar
  52. Marcantonio F, Higgins S, Anderson RF, Stute M, Schlosser P, Rasbury ET (1998) Terrigenous helium in deep-sea sediments. Geochim Cosmochim Acta 62(9):1535–1543Google Scholar
  53. Marcantonio F, Kumar N, Stute M, Andersen RF, Seidl MA, Schlosser P, Mix A (1995) Comparative study of accumulation rates derived by He and Th isotope analysis of marine sediments. Earth Planet Sci Lett 133(3–4):549–555Google Scholar
  54. Marcantonio F, Thomas DJ, Woodard S, McGee D, Winckler G (2009) Extraterrestrial He-3 in Paleocene sediments from Shatsky Rise: Constraints on sedimentation rate variability. Earth Planet Sci Lett 287(1–2):24–30. doi: 10.1016/J.Epsl.2009.07.029CrossRefGoogle Scholar
  55. Marcantonio F, Turekian KK, Higgins S, Anderson RF, Stute M, Schlosser P (1999) The accretion rate of extraterrestrial He-3 based on oceanic Th-230 flux and the relation to Os isotope variation over the past 200,000 years in an Indian Ocean core. Earth Planet Sci Lett 170(3):157–168Google Scholar
  56. Matsuda J, Murota M, Nagao K (1990) He and Ne isotopic studies on the extraterrestrial material in deep-sea sediments. J Geophys Res 95(B5):7111–7117Google Scholar
  57. McGee D, Marcantonio F, McManus JF, Winckler G (2010) The response of excess Th-230 and extraterrestrial He-3 to sediment redistribution at the Blake Ridge, western North Atlantic. Earth Planet Sci Lett 299(1–2):138–149. doi: 10.1016/J.Epsl.2010.08.029CrossRefGoogle Scholar
  58. McGee D (2010) Reconstructing and interpreting the dust record and probing the plumbing of Mono Lake. Dissertation, Columbia UniversityGoogle Scholar
  59. Merrihue C (1964) Rare gas evidence for cosmic dust in modern pacific red clay. Ann Ny Acad Sci 119(A1):351–367Google Scholar
  60. Mukhopadhyay S, Farley KA (2006) New insights into the carrier phase(s) of extraterrestrial 3He in geologically old sediments. Geochim Cosmochim Acta 70(19):5061–5073Google Scholar
  61. Mukhopadhyay S, Farley KA, Montanari A (2001a) A 35 Myr record of helium in pelagic limestones from Italy: Implications for interplanetary dust accretion from the early Maastrichtian to the middle Eocene. Geochim Cosmochim Acta 65(4):653–669Google Scholar
  62. Mukhopadhyay S, Farley KA, Montanari A (2001b) A short duration of the cretaceous-tertiary boundary event: evidence from extraterrestrial helium-3. Science 291(5510):1952–1955Google Scholar
  63. Muller RA, Macdonald GJ (1995) Glacial cycles and orbital inclination. Nature 377(6545):107–108Google Scholar
  64. Murphy BH, Farley KA, Zachos JC (2010) An extraterrestrial He-3-based timescale for the Paleocene-Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266. Geochim Cosmochim Acta 74(17):5098–5108. doi: 10.1016/J.Gca.2010.03.039CrossRefGoogle Scholar
  65. Murray J (1876) On the distribution of volcanic debris over the floor of the ocean—its character, source and some of the products of its disintegration and decomposition. Proc R Soc Edinb 9:247–261Google Scholar
  66. Nesvorný D, Bottke WF, Levison HF, Dones L (2003) Recent origin of the solar system dust bands. Astrophys J 591(1):486–497Google Scholar
  67. Nesvorný D, Jenniskens P, Levison HF, Bottke WF, Vokrouhlicky D, Gounelle M (2010) Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys J 713(2):816–836. doi: 10.1088/0004-637x/713/2/816CrossRefGoogle Scholar
  68. Nesvorný D, Vokrouhlicky D, Bottke WF, Sykes M (2006) Physical properties of asteroid dust bands and their sources. Icarus 181(1):107–144. doi: 10.1016/J.Icarus.2005.10.022CrossRefGoogle Scholar
  69. Nier AO, Schlutter DJ (1990) Helium and neon in stratospheric particles. Meteoritics 25:263–267Google Scholar
  70. Nier AO, Schlutter DJ (1992) Extraction of helium from individual interplanetary dust particles by step-heating. Meteoritics 27(2):166–173Google Scholar
  71. Nier AO, Schlutter DJ (1993) The thermal history of interplanetary dust particles collected in the Earth’s stratosphere. Meteoritics 28(5):675–681Google Scholar
  72. Nier AO, Schlutter DJ, Brownlee DE (1990) Helium and neon isotopes in deep Pacific Ocean sediments. Geochim Cosmochim Acta 54(1):173–182Google Scholar
  73. Patterson DB, Farley KA (1998) Extraterrestrial 3He in seafloor sediments: Evidence for correlated 100 kyr periodicity in the accretion rate of interplanetary dust, orbital parameters, and Quaternary climate. Geochim Cosmochim Acta 62(23/24):3669–3682Google Scholar
  74. Patterson DB, Farley KA, Schmitz B (1998) Preservation of extraterrestrial He-3 in 480-Ma-old marine limestones. Earth Planet Sci Lett 163(1–4):315–325Google Scholar
  75. Pepin RO, Palma RL, Schlutter DJ (2000) Noble gases in interplanetary dust particles, I: the excess helium-3 problem and estimates of the relative fluxes of solar wind and solar energetic particles in interplanetary space. Meteorit Planet Sci 35(3):495–504Google Scholar
  76. Pepin RO, Palma RL, Schlutter DJ (2001) Noble gases in interplanetary dust particles, II: excess helium-3 in cluster particles and modeling constraints on interplanetary dust particle exposures to cosmic-ray irradiation. Meteorit Planet Sci 36(11):1515–1534Google Scholar
  77. Röhl U, Bralower TJ, Norris RD, Wefer G (2000) New chronology for the late paleocene thermal maximum and its environmental implications. Geology 28(10):927–930Google Scholar
  78. Röhl U, Westerhold T, Bralower TJ, Zachos JC (2007) On the duration of the paleocene-eocene thermal maximum (PETM). Geochem Geophy Geosy 8:Q12002. doi: 10.1029/2007GC001784Google Scholar
  79. Stuart FM, Harrop PJ, Knott S, Turner G (1999) Laser extraction of helium isotopes from antarctic micrometeorites: source of He and implications for the flux of extraterrestrial He-3 to earth. Geochim Cosmochim Acta 63(17):2653–2665Google Scholar
  80. Takanayagi M, Ozima M (1987) Temporal variation of 3He/4He ratio recorded in deep-sea sediment cores. J Geophys Res 92(B12):12531–12538Google Scholar
  81. Tagle R, Claeys P (2004) Comet or asteroid shower in the late Eocene? Science 305(5683):492Google Scholar
  82. Thiel E, Schmidt RA (1961) Spherules from the antarctic ice cap. J Geophys Res 66(1):307–310Google Scholar
  83. Tilles D (1962) Primordial gas in the Washington county meteorite. J Geophys Res 67(4):1687–1689Google Scholar
  84. Tolstikhin I, Lehmann BE, Loosli HH, Gautschi A (1996) Helium and argon isotopes in rocks, minerals, and related groundwaters: a case study in northern Switzerland. Geochim Cosmochim Acta 60(9):1497–1514Google Scholar
  85. Tolstikhin IN, Drubetskoy ER (1975) The 3He/4He and (4He/40Ar)rad isotope ratios for earth’s crust. Geochem Int 12:133–145Google Scholar
  86. Torfstein A, Winckler G, Tripati A (2010) Productivity feedback did not terminate the paleocene-eocene thermal maximum (PETM). Clim Past 6(2):265–272Google Scholar
  87. Wieler R, Grimberg A, Heber VS (2007) Consequences of the non-existence of the “SEP” component for noble gas geo- and cosmochemistry. Chem Geol 244:382–390Google Scholar
  88. Winckler G, Anderson RF, Schlosser P (2005) Equatorial Pacific productivity and dust flux during the mid-Pleistocene climate transition. Paleoceanography 20(4): PA4025. doi: 10.1029/2005pa001177Google Scholar
  89. Winckler G, Anderson RF, Stute M, Schlosser P (2004) Does interplanetary dust control 100 kyr glacial cycles? Quatern Sci Rev 23(18–19):1873–1878. doi: 10.1016/J.Quascirev.2004.05.007CrossRefGoogle Scholar
  90. Winckler G, Fischer H (2006) 30,000 years of cosmic dust in antarctic ice. Science 313(5786):491. doi: 10.1126/Science.1127469CrossRefGoogle Scholar
  91. Zähringer J (1962) Ueber die Uredelgase in den Achondriten Kapoeta und Staroe Pesjanoe. Geochimica et Cosmochimica Acta 26(6):665-680. doi: 10.1016/0016-7037(62)90045-5Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Earth and Planetary SciencesHarvard UniversityCambridgeUSA

Personalised recommendations