Noble Gases as Environmental Tracers in Sediment Porewaters and Stalagmite Fluid Inclusions

  • M. S. BrennwaldEmail author
  • N. Vogel
  • Y. Scheidegger
  • Y. Tomonaga
  • D. M. Livingstone
  • R. Kipfer
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)


In well-studied aquatic systems such as surface waters and groundwater, noble gases are used extensively as natural tracers to reconstruct palaeoenvironmental conditions, to study transport and mixing, and to identify the geochemical origin of geogenic fluids. It has been suggested that less well-studied aquatic systems such as the porewaters of lacustrine and oceanic sediments and the fluid inclusions present in stalagmites might also be suitable as noble gas archives for environmental studies, but until recently the lack of adequate experimental techniques had hindered the development of noble gas geochemistry in these systems. This chapter reviews recent technical advances in this field and describes the scientific applications that these advances have made possible. The porewaters of lacustrine and oceanic sediments are now well established as noble gas archives in studies of temperature, salinity and mixing conditions that prevailed in the overlying water body in the past, as well as in studies of the transport and origin of solutes and pore fluids in the sediment. The geochemistry of noble gases in stalagmite fluid inclusions is still in the early stages of development. However, the results available to date suggest that stalagmite fluid inclusions have great potential as a noble gas archive in reconstructing palaeoclimatic conditions near caves with suitable stalagmites.


Noble Gases Fluid Inclusions Sediment Porewater Overlying Water Body Geochemical Origin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adkins J, McIntyre K, Schrag P (2002) The salinity, temperature, and \(\delta^{18}\text{O}\) of the glacial deep ocean. Science 298:1769–1773. doi: 10.1126/science.1076252Google Scholar
  2. Aeppli C, Hofstetter TB, Amaral HIF, Kipfer R, Schwarzenbach RP, Berg M (2010) Quantifying in-situ transformation rates of chlorinated ethenes by combining compound-specific stable isotope analysis, groundwater dating, and carbon isotope mass balances. Environ Sci Technol 44(10):3705–3711. doi: 10.1021/es903895bCrossRefGoogle Scholar
  3. Aeschbach-Hertig W, Solomon DK (2012) Noble gas thermometry in groundwater hydrology. In: Burnard PG (ed) The Noble Gases as geochemical tracers. Advances in Isotope Geochemistry Springer, New York.Google Scholar
  4. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (1999) Interpretation of dissolved atmospheric noble gases in natural waters. Water Resour Res 35(9):2779–2792. doi: 10.1029/1999WR900130Google Scholar
  5. Amaral H, Berg M, Brennwald MS, Hofer M, Kipfer R (2010) \(^{\rm13}\)C/\(^{\rm12}\)C analysis of ultra-trace amounts of volatile organic contaminants in groundwater by vacuum extraction. Environ Sci Technol 44:1023–1029. doi: 10.1021/es901760qGoogle Scholar
  6. Austin JA, Schlager W, Comet PA, Droxler AW, Eberli GP, Fourcade E, Freeman L, Fulthorpe C, Harwood G, Kuhn G, Lavoie D, Leckie M, Melillo AJ, Moore A, Mullins HT, Ravenne C, Sager WW, Swart P, Verbeek JW, Watkins DK, Williams C (1986) Site 628: Little Bahama Bank. In: Proceedings of the Ocean drilling program, part A: initial reports, College Station, TX (Ocean Drilling Program), vol 101, pp 213–270Google Scholar
  7. Ayliffe LK, Turner G, Burnard PG (1993) Noble gas contents of speleothem inclusion fluids: potential as indicators of precipitation temperature. In: Terra Nova Abstracts, vol 5, p 646Google Scholar
  8. Badertscher S, Fleitmann D, Cheng H, Edwards LR, Göktürk OM, Zumbühl A, Leuenberger M, Tüysüz O (2011) Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea. Nature Geosci 4:236–239. doi: 10.1038/NGEO1106CrossRefGoogle Scholar
  9. Badertscher SV (2007) Charakterisierung von Einschlüssen in Stalagmiten zur Bestimmung der Paläotemperatur. Master’s thesis, ETH Zürich, SwitzerlandGoogle Scholar
  10. Badertscher SV, Scheidegger Y, Leuenberger M, Nyfeler P, Fleitmann D, Wieler R, Kipfer R (2007) Trace gas content in air inclusions in speleothems as a new paleoclimate archive. In: Geophysical research abstracts, 4th EGU general assembly, European Geosciences Union, Vienna, Austria, vol 9, p A0491Google Scholar
  11. Ballentine CJ, Burnard PG (2002) Production, release and transport of noble gases in the continental crust. In: Porcelli D, Ballentine C, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, reviews in mineralogy and geochemistry, vol 47. Mineralogical Society of America, Geochemical Society, pp 481–538Google Scholar
  12. Ballentine CJ, Hall CM (1999) Determining paleotemperature and other variables by using an error-weighted, nonlinear inversion of noble gas concentrations in water. Geochim Cosmochim Acta 63(16):2315–2336. doi: 10.1016/S0016-7037(99)00131-3Google Scholar
  13. Ballentine CJ, Burgess R, Marty B (2002) Tracing fluid origin, transport and interaction in the crust. In: Porcelli D, Ballentine C, Wieler R (eds) Noble gases in cosmochemistry and geochemistry, reviews in mineralogy and geochemistry, vol 47. Mineralogical Society of America, Geochemical Society, pp 539–614Google Scholar
  14. Barnes R (1973) An in situ interstitial water sampler for use in unconsolidated sediments. Deep-Sea Res 20:1125–1128. doi: 10.1016/0011-7471(73)90026-0Google Scholar
  15. Barnes RO (1979) Operation of the IPOD in situ pore water sampler. In: Sibuet J, Ryan W (eds) Initial reports of the Deep Sea Drilling Project, vol 47, part 2, DSDP, Washington (U.S. Govt. Printing Office), pp 19–22Google Scholar
  16. Barnes RO (1987) Fluid kinematics, fluid residence times, and rock degassing in oceanic crust determined from noble gas contents of Deep Sea Drilling Project pore waters. J Geophys Res 92(B12):12491–12506Google Scholar
  17. Barnes RO (1988) ODP in-situ fluid sampling and measurement: a new wireline tool. In: Mascle A, Moore J (eds) Proceedings of the Ocean Drilling Program, initial reports (Part A), vol 110. ODP, College Station TX, pp 55–63Google Scholar
  18. Barnes RO, Bieri RH (1976) Helium flux through marine sediments of the northern Pacific Ocean. Earth Planet Sci Lett 28(3):331–336. doi: 10.1016/0012-821X(76)90194-1Google Scholar
  19. Bayer R, Schlosser P, Bönisch G, Rupp H, Zaucker F, Zimmek G (1989) Performance and blank components of a mass spectrometric system for routine measurement of helium isotopes and tritium by the \(^3\)He ingrowth method. Sitzungsberichte der Heidelberger Akademie der Wissenschaften Mathemathisch-naturwissenschaftliche Klasse 5, University of Heidelberg, Germany.Google Scholar
  20. Berner RA (1975) Diagenetic models of dissolved species in the interstitial waters of compacting sediments. Am J Sci 275:88–96Google Scholar
  21. Bertin C, Bourg ACM (1994) Rn-222 and chloride as natural tracers of the infiltration of river water into an alluvial aquifer in which there is significant river groundwater mixing. Environ Sci Technol 28(5):794–798Google Scholar
  22. Beyerle U, Aeschbach-Hertig W, Imboden DM, Baur H, Graf T, Kipfer R (2000) A mass spectrometric system for the analysis of noble gases and tritium from water samples. Environ Sci Technol 34(10):2042–2050. doi: 10.1021/es990840hGoogle Scholar
  23. Beyerle U, Leuenberger M, Schwander J, Kipfer R (2003) Noble gas evidence for gas fractionation in firn. In: Abstracts of the 13th Annual V.M. Goldschmidt Conference 2003, Kurashiki, Japan, Geochim. Cosmochim. Acta, vol 67, p A38.Google Scholar
  24. Bieri R (1971) Dissolved noble gases in marine waters. Earth Planet Sci Lett 10(3):329–333Google Scholar
  25. Bosch A, Mazor E (1988) Natural gas association with water and oil as depicted by atmospheric noble gases: case studies from the Southeastern Mediterranean Coastal Plain. Earth Planet Sci Lett 87(3):338–346. doi: 10.1016/0012-821X(88)90021-0Google Scholar
  26. Bourg IC, Sposito G (2008) Isotopic fractionation of noble gases by diffusion in liquid water: molecular dynamics simulations and hydrologic applications. Geochim Cosmochim Acta 72:2237–2247. doi: 10.1016/j.gca.2008.02.012Google Scholar
  27. Brennwald MS, Hofer M, Peeters F, Aeschbach-Hertig W, Strassmann K, Kipfer R, Imboden DM (2003) Analysis of dissolved noble gases in the pore water of lacustrine sediments. Limnol Oceanogr Methods 1:51–62, Scholar
  28. Brennwald MS, Peeters F, Imboden DM, Giralt S, Hofer M, Livingstone DM, Klump S, Strassmann K, Kipfer R (2004) Atmospheric noble gases in lake sediment pore water as proxies for environmental change. Geophys Res Lett 31(4):L04202. doi: 10.1029/2003GL019153
  29. Brennwald MS, Imboden DM, Kipfer R (2005) Release of gas bubbles from lake sediment traced by noble gas isotopes in the sediment pore water. Earth Planet Sci Lett 235(1–2):31–44. doi: 10.1016/j.epsl.2005.03.004Google Scholar
  30. van Breukelen MR, Vonhof HB, Hellstrom JC, Wester WCG, Kroon D (2008) Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet Sci Lett 275(1–2):54–60. doi: 10.1016/j.epsl.2008.07.060CrossRefGoogle Scholar
  31. Chaduteau C, Fourré E, Jean-Baptiste P, Dapoigny A, Baumier D, Charlou JL (2007) A new method for quantitative analysis of helium isotopes in sediment pore-waters. Limnol Oceanogr Methods 5:425–432. Scholar
  32. Chaduteau C, Jean-Baptiste P, Fourré E, Charlou JL, Donval JP (2009) Helium transport in sediment pore fluids of the Congo-Angola margin. Geochem Geophys Geosyst 10(1). doi: 10.1029/2007GC001897Google Scholar
  33. Cheng H, Edwards RL, Broecker WS, Denton GH, Kong X, Wang Y, Zhang R, Wang X (2009) Ice age terminations. Science 326(5950):248–52. doi: 10.1126/science.1177840Google Scholar
  34. Copeland P, Watson EB, Urizar SC, Patterson D, Lapen TJ (2007) Alpha thermochronology of carbonates. Geochim Cosmochim Acta 71:4488–4511. doi: 10.1016/j.gca.2007.07.004CrossRefGoogle Scholar
  35. Craig H, Weiss RF (1971) Dissolved gas saturation anomalies and excess helium in the ocean. Earth Planet Sci Lett 10(3):289–296. doi: 10.1016/0012-821X(71)90033-1Google Scholar
  36. Davis B, Brewer S, Stevenson A, Guiot J (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Sci Rev 22(15–17):1701–1716. doi: 10.1016/S0277-3791(03)00173-2CrossRefGoogle Scholar
  37. De Batist M, Imbo Y, Vermeesch P, Klerkx J, Giralt S, Delvaux D, Lignier V, Beck C, Kalugin I, Abdrakhmatov K (2002) Bathymetry and sedimentary environment of Lake Issyk-Kul, Kyrgyz Republic (Central Asia): a large, high-altitude, tectonic lake. In: Klerkx J, Imanackunov B (eds) Lake Issyk-Kul: its natural environment, NATO science series IV: earth and environmental sciences, vol 13. Kluwer Academic Publishers, Boston, pp 101–123Google Scholar
  38. Dreybrodt W (1980) Deposition of calcite from thin films of natural calcareous solutions and the growth of speleothems. Chem Geol 29:89–105Google Scholar
  39. Dyck W, Da Silva FG (1981) The use of ping-pong balls and latex tubing for sampling the helium content of lake sediments. J Geochem Explor 14:41–48. doi: 10.1016/0375-6742(81)90102-3Google Scholar
  40. Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 322(8):549–560. doi: 10.1002/andp.19053220806CrossRefGoogle Scholar
  41. Faust GT (1950) Thermal analysis studies on carbonates: 1 aragonite and calcite. Am Mineral 35:207–224Google Scholar
  42. Fleitmann D, Burns S, Neff U, Mangini A, Matter A (2003) Changing moisture sources over the last 333,000 years in Northern Oman from fluid inclusion evidence in speleothems. Quaternary Res 60:223–232. doi: 10.1016/S0033-5894(03)00086-3CrossRefGoogle Scholar
  43. Fleitmann D, Cheng H, Badertscher S, Edwards RL, Mudelsee M, Goektuerk OM, Fankhauser A, Pickering R, Raible CC, Matter A, Kramers J, Tuysuz O (2009) Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys Res Lett 36: L10707. doi: 10.1029/2009GL040050
  44. Fritz SC (1996) Paleolimnological records of climatic change in North America. Limnol Oceanogr 41(5):882–889Google Scholar
  45. Giralt S, Riera S, Leroy S, Buchaca T, Klerkx J, De Batist M, Beck C, Bobrov V, Brennwald MS, Catalan J, Gavshin V, Julia R, Kalugin I, Kipfer R, Lignier V, Lombardi S, Matychenkov V, Peeters F, Podsetchine V, Romanovsky V, Shukonikov F, Voltattorni N (2003) 1,000 years of environmental history of Lake Issyk-Kul. In: Nihoul J, Zavialov P, Micklin P (eds) Dying and dead seas: climatic versus anthropic causes, NATO science series IV: Earth and environmental sciences, vol 36. Kluwer Academic Publishers, Boston, pp 228–253Google Scholar
  46. Grathwohl P (1998) Diffusion in natural porous media, topics in environmental fluid mechanics. Kluwer Academic Publishers, BostonGoogle Scholar
  47. Griffiths ML, Drysdale RN, Vonhof HB, Gagan MK, Zhao Jx, Ayliffe LK, Hantoro WS, Hellstrom JC, Cartwright I, Frisia S, Suwargadi BW (2010) Younger Dryas-Holocene temperature and rainfall history of southern Indonesia from \(\delta ^{18}\text{O}\) in speleothem calcite and fluid inclusions. Earth Planet Sci Lett 295(1–2):30–36. doi:  10.1016/j.epsl.2010.03.018CrossRefGoogle Scholar
  48. Henderson GM (2006) Caving in to new chronologies. Science 313(5787):620–622. doi: 10.1126/science.1128980CrossRefGoogle Scholar
  49. Hoehn E, von Gunten HR (1989) Radon in groundwater—a tool to assess infiltration from surface waters to aquifers. Water Resour Res 25(8):1795–1803Google Scholar
  50. Hohmann R, Schlosser P, Jacobs S, Ludin A, Weppernig R (2002) Excess helium and neon in the southeast Pacific: Tracers for glacial meltwater. J Geophys Res-Oceans 107(C11):3198. doi: 10.1029/2000JC000378
  51. Holzner CP, McGinnis DF, Schubert CJ, Kipfer R, Imboden DM (2008) Noble gas anomalies related to high-intensity methane gas seeps in the Black Sea. Earth Planet Sci Lett 265(3–4):396–409. doi: 10.1016/j.epsl.2007.10.029Google Scholar
  52. Horseman S, Higgo J, Alexander J, Harrington J (1996) Water, gas and solute movement through argillaceaous media. Technical Report CC-96/1, OECD Nuclear Energy Agency, FranceGoogle Scholar
  53. Huber C, Beyerle U, Leuenberger M, Schwander J, Kipfer R, Spahni R, Severinghaus JP, Weiler K (2006) Evidence for molecular size dependent gas fractionation in firn air derived from noble gases, oxygen, and nitrogen measurements. Earth Planet Sci Lett 243(1–2):61–73. doi: 10.1016/j.epsl.2005.12.036CrossRefGoogle Scholar
  54. Huxol S, Brennwald MS, Hoehn E, Kipfer R (2012) On the fate of \(^{220}\)Rn in soil material in dependence of water content: Implications from field and laboratory experiments. Chem Geol 298–299:116–122. doi:  10.1016/j.chemgeo.2012.01.002CrossRefGoogle Scholar
  55. Imboden DM (1975) Interstitial transport of solutes in non-steady state accumulating and compacting sediments. Earth Planet Sci Lett 27(2):221–228. doi: 10.1016/0012-821X(75)90033-3Google Scholar
  56. Jähne B, Heinz G, Dietrich W (1987) Measurement of the diffusion coefficients of sparingly soluble gases in water. J Geophys Res 92(C10):10767–10776Google Scholar
  57. Jean-Baptiste P, Mantisi F, Dapoigny A, Stievenard M (1992) Design and performance of a mass-spectrometric facility for measuring helium-isotopes in natural-waers and for low-level tritium determination by the He-3 ingrowth method. Appl Radiat Isotopes 43(7):881–891. doi: 10.1016/0883-2889(92)90150-DCrossRefGoogle Scholar
  58. Kendall AC, Broughton PL (1978) Origin of fabrics in speleothems composed of columnar calcite crystals. J Sediment Petrol 48:519–538Google Scholar
  59. Kipfer R, Aeschbach-Hertig W, Peeters F, Stute M (2002) Noble gases in lakes and ground waters. In: Porcelli D, Ballentine C, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, reviews in mineralogy and geochemistry, vol 47. Mineralogical Society of America, Geochemical Society, pp 615–700Google Scholar
  60. Kluge T (2008) Fluid inclusions in speleothems as a new archive for the noble gas thermometer. PhD thesis, University of Heidelberg, GermanyGoogle Scholar
  61. Kluge T, Marx T, Scholz D, Niggemann S, Mangini A, Aeschbach-Hertig W (2008) A new tool for palaeoclimate reconstruction: noble gas temperatures from fluid inclusions in speleothems. Earth Planet Sci Lett 269(3–4):408–415Google Scholar
  62. Klump S, Kipfer R, Cirpka OA, Harvey CF, Brennwald MS, Ashfaque KN, Badruzzaman ABM, Hug SJ, Imboden DM (2006) Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium. Environ Sci Technol 40(1):243–250 doi: 10.1021/es051284wGoogle Scholar
  63. Lachniet MS (2009) Climatic and environmental controls on speleothem oxygen-isotope values. Quat Sci Rev 28(5–6):412–432. doi: 10.1016/j.quascirev.2008.10.021CrossRefGoogle Scholar
  64. Lan TF, Sano Y, Yang TF, Takahata N, Shirai K, Pinti DL (2010) Evaluating earth degassing in subduction zones by measuring helium fluxes from the ocean floor. Earth Planet Sci Lett 298(3–4):317–322. doi: 10.1016/j.epsl.2010.07.049CrossRefGoogle Scholar
  65. Lee E, Nam S (2003) Freshwater supply by Korean rivers to the East Sea during the last glacial maximum: a review and new evidence from the Korea Strait region. Geo-Marine Lett 23(1):1–6. doi: 10.1007/s00367-003-0118-1CrossRefGoogle Scholar
  66. Lerman A, Imboden D, Gat J (1995) Physics and chemistry of lakes. Springer, Berlin. doi: 10.1002/iroh.19960810312CrossRefGoogle Scholar
  67. Litt T, Krastel S, Sturm M, Kipfer R, Örcen S, Heumann G, Franz S, Ülgen U, Niessen F (2009) ’PALEOVAN’, International Continental Scientific Dilling Program (ICDP) site survey results and perspectives. Quaternary Sci Rev 28:1555–1567. doi: 10.1016/j.quascirev.2009.03.002Google Scholar
  68. Litt T, Anselmetti FS, Cagatay MN, Kipfer R, Krastel S, Schmincke HU (2011) A 500,000-year-long sediment archive drilled in Eastern Anatolia. EOS 92(51):477–479Google Scholar
  69. Loose B, Schlosser P, Smethie WM, Jacobs S (2009) An optimized estimate of glacial melt from the ross ice shelf using noble gases, stable isotopes, and CFC transient tracers. J Geophys Res-Oceans 114:C08007. doi: 10.1029/2008JC005048
  70. Mamyrin BA, Tolstikhin IN (1984) Helium isotopes in nature, developments in geochemistry, vol 3, 1st edn. Elsevier, Amsterdam, Oxford, New York, TokyoGoogle Scholar
  71. Mazor E (1972) Paleotemperatures and other hydrological parameters deduced from gases dissolved in groundwaters, Jordan Rift Valley, Israel. Geochim Cosmochim Acta 36(12):1321–1336. doi: 10.1016/0016-7037(72)90065-8Google Scholar
  72. Mazurek M, Alt-Epping P, Bath A, Gimmi T, Waber HN, Buschaert S, De Cannière P, De Craen M, Gautschi A, Savoye S, Vinsot A, Wemaere I, Wouters L (2011) Natural tracer profiles across argillaceous formations. Appl Geochem 26:1035–1064. doi: 10.1016/j.apgeochem.2011.03.124CrossRefGoogle Scholar
  73. McDermott F, Schwarcz H, Rowe P (2005) Isotopes in speleothems. In: Leng M (ed) Isotopes in palaeoenvironmental research, developments in paleoenvironmental research, vol 10. Springer, pp 185–225Google Scholar
  74. Mohapatra RK, Schwenzer SP, Herrmann S, Murty SVS, Ott U, Gilmour JD (2009) Noble gases and nitrogen in Martian meteorites Dar al Gani 476, Sayh al Uhaymir 005 and Lewis Cliff 88516: EFA and extra neon. Geochim Cosmochim Acta 73(5):1505–1522. doi: 10.1016/j.gca.2008.11.030CrossRefGoogle Scholar
  75. Musset AE (1969) Diffusion measurements and the potassium-argon method of dating. Geophys J Roy Astron Soc 18(3):257–303. doi: 10.1111/j.1365-246X.1969.tb03569.xCrossRefGoogle Scholar
  76. Osenbrück K, Lippmann J, Sonntag C (1998) Dating very old pore waters in impermeable rocks by noble gas isotopes. Geochim Cosmochim Acta 62(18):3041–3045. doi: 10.1016/S0016-7037(98)00198-7CrossRefGoogle Scholar
  77. Ozima M, Podosek FA (2002) Noble gas geochemistry, 2nd edn. Cambridge University PressGoogle Scholar
  78. Papp L, Palcsu L, Major Z (2010) Noble gas measurements from tiny water amounts: fluid inclusions in carbonates of speleothemes and coral skeletons. In: Geophysical Research Abstracts, 7th EGU General Assembly, European Geosciences Union, Vienna, Austria, vol 12, p A432Google Scholar
  79. Peeters F, Kipfer R, Achermann D, Hofer M, Aeschbach-Hertig W, Beyerle U, Imboden DM, Rozanski K, Fröhlich K (2000) Analysis of deep-water exchange in the Caspian Sea based on environmental tracers. Deep-Sea Res I 47(4):621–654. doi: 10.1016/S0967-0637(99)00066-7CrossRefGoogle Scholar
  80. Pitre F, Pinti DL (2010) Noble gas enrichments in porewater of estuarine sediments and their effect on the estimation of net denitrification rates. Geochim Cosmochim Acta 74:531–539. doi: 10.1016/j.gca.2009.10.004Google Scholar
  81. Poulson TL, White WB (1969) The cave environment. Science 165(3897):971–981. doi: 10.1126/science.165.3897.971CrossRefGoogle Scholar
  82. Renkin EM (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J General Physiol 38:225–243Google Scholar
  83. Ricketts RD, Johnson TC, Brown ET, Rasmussen KA, Romanovsky VA (2001) The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeogr Palaeoclimatol Palaeoecol 176(1–4):207–227. doi: 10.1016/S0031-0182(01)00339-XGoogle Scholar
  84. Romanovsky VV (2002) Water level variations and water balance of Lake Issyk-Kul. In: Klerkx J, Imanackunov B (eds) Lake Issyk-Kul: its natural environment, NATO science series IV: earth and environmental sciences, vol 13. Kluwer Academic Publishers, London, pp 45–57Google Scholar
  85. Rübel A, Sonntag C, Lippmann J, Pearson F, Gautschi A (2002) Solute transport in formations of very low permeability: profiles of stable isotope and dissolved noble gas contents of pore water in the Opalinus Clay. Mont Terri. Switzerland. Geochim Cosmochim Acta 66(8):1311–1321. doi: 10.1016/S0016-7037(01)00859-6CrossRefGoogle Scholar
  86. Sano Y, Wakita H (1987) Helium isotopes and heat flow on the ocean floor. Chem Geol 66(3–4):217–226. doi: 10.1016/0168-9622(87)90043-1CrossRefGoogle Scholar
  87. Sayles FL, Jenkins WJ (1982) Advection of pore fluids through sediments in the Equatorial East Pacific. Science 217:245–248Google Scholar
  88. Scheidegger Y (2011) The use of noble gases in stalagmite fluid inclusions as proxies for the cave temperature. PhD thesis, Swiss Federal Institute of Technology Zurich (ETH), Switzerland. doi: 10.3929/ethz-a-006551468
  89. Scheidegger Y, Kluge T, Kipfer R, Aeschbach-Hertig W, Wieler R (2008) Paleotemperature reconstruction using noble gas concentrations in speleothem fluid inclusions. Pages News 16(3):10–12Google Scholar
  90. Scheidegger Y, Baur H, Brennwald MS, Fleitmann D, Wieler R, Kipfer R (2010) Accurate analysis of noble gas concentrations in small water samples and its application to fluid inclusions in stalagmites. Chem Geol 272(1–4):31–39. doi: 10.1016/j.chemgeo.2010.01.010Google Scholar
  91. Scheidegger Y, Brennwald MS, Fleitmann D, Jeannin PY, Wieler R, Kipfer R (2011) Determination of Holocene cave temperatures from Kr and Xe concentrations in stalagmite fluid inclusions. Chem Geol 288(1–2):61–66. doi: 10.1016/j.chemgeo.2011.07.002CrossRefGoogle Scholar
  92. Scherer P, Schultz L, Loeken T (1994) Weathering and atmospheric noble gases in chondrites. Matsuda J (ed) Noble gas geochemistry and cosmochemistry. Terra Scientific Publishing Company, pp 43–53Google Scholar
  93. Schlosser P, Winckler G (2002) Noble gases in ocean waters and sediments. In: Porcelli D, Ballentine C, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, reviews in mineralogy and geochemistry, vol 47. Mineralogical Society of America, Geochemical Society, pp 701–730Google Scholar
  94. Schrag DP, Hampt G, Murray DW (1996) Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean. Science 272:1930–1932Google Scholar
  95. Schrag DP, Adkins J, McIntyre K, Alexander J, Hodell A, Charles D, McManus J (2002) The oxygen isotopic composition of seawater during the Last Glacial Maxiumum. Quaternary Sci Rev 21(1–3):331–342. doi: 10.1016/S0277-3791(01)00110-XGoogle Scholar
  96. Schwarcz HP, Harmon RS, Thompson P, Ford DC (1976) Stable isotope studies of fluid inclusions in speleothems and their paleoclimatic significance. Geochim Cosmochim Acta 40:657–665Google Scholar
  97. Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental Organic Chemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  98. Smithson PA (1991) Interrelationships between cave and outside air temperatures. Theoret Appl Climatology 44(1):65–73Google Scholar
  99. Solomon DK (2000) \(^4\)He in groundwater. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Boston, pp 425–439Google Scholar
  100. Solomon DK, Cook PG (2000) \(^3\)H and \(^3\)He. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Boston, pp 397–424Google Scholar
  101. Stanley R, Jenkins W (2012) Noble gases in seawater as tracers for physical and biogeochemical ocean processes. In: Burnard PG (ed) The Noble Gases as geochemical tracers, Advances in isotope geochemistry. Springer, New YorkGoogle Scholar
  102. Stephenson M, Schwartz WJ, Melnyk TW, Motycka MF (1994) Measurement of advective water velocity in lake sediment using natural helium gradients. J Hydrol 154(1–4):63–84. doi: 10.1016/0022-1694(94)90212-7Google Scholar
  103. Strassmann KM, Brennwald MS, Peeters F, Kipfer R (2005) Dissolved noble gases in porewater of lacustrine sediments as palaeolimnological proxies. Geochim Cosmochim Acta 69(7):1665–1674. doi: 10.1016/j.gca.2004.07.037Google Scholar
  104. Sültenfuss J, Roether W, Rhein M (2009) The Bremen mass spectrometric facility for the measurement of helium isotopes, neon, and tritium in water. Isotopes In Environmental and Health Studies 45(2):83–95. doi: 10.1080/10256010902871929CrossRefGoogle Scholar
  105. Swart KS (2000) The oxygen isotopic composition of interstitial waters: evidence for fluid flow and recrystalization in the margin of the Great Bahama Bank. In: Proceedings of the Ocean Drilling Program, Scientific Results, vol 166, pp 91–98Google Scholar
  106. Tomonaga Y (2010) Noble gases as tracers for transport of solutes and fluids in lake and ocean sediments. PhD thesis, Swiss Federal Institute of Technology Zurich (ETH), Switzerland. doi: 10.3929/ethz-a-006129449
  107. Tomonaga Y, Brennwald MS, Kipfer R (2011a) An improved method for the analysis of dissolved noble gases in the pore water of unconsolidated sediments. Limnol Oceanogr, Methods 9:42–49Google Scholar
  108. Tomonaga Y, Brennwald MS, Kipfer R (2011b) Spatial distribution and flux of terrigenic He dissolved in the sediment pore water of Lake Van (Turkey). Geochim Cosmochim Acta 75(10):2848–2864. doi: 10.1016/j.gca.2011.02.038CrossRefGoogle Scholar
  109. Top Z, Izdar E, Ergün M, Konuk T (1990) Evidence for tectonism from \(^3\)He and residence time of helium in the Black Sea. EOS 71:1020–1021Google Scholar
  110. Torres M, Bayer R, Winckler G, Suckow A, Froelich P (1995) Elemental and isotopic abundance of noble gases in formation fluids recovered in situ from the Chile Triple Junction. In: Lewis S, Behrmann J, Musgrave R, Cande S (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol 141. ODP, College Station TX, pp 321–329Google Scholar
  111. Vogel N, Scheidegger Y, Brennwald MS, Fleitmann D, Figura S, Wieler R, Kipfer R (2012) Noble gas paleotemperatures and water contents of stalagmites—a new extraction tool and a new paleoclimate proxy. In: Geophysical Research Abstracts, EGU General Assembly 2012, European Geosciences Union, Vienna, Austria, vol 14Google Scholar
  112. Wainer K, Genty D, Blamart D, Daeron M, Bar-Matthews M, Vonhof H, Dublyansky Y, Pons-Branchu E, Thomas L, van Calsteren P, Quinif Y, Caillon N (2011) Speleothem record of the last 180 ka in Villars cave (SW France): Investigation of a large \(\delta ^{18}\text{O}\) shift between MIS6 and MIS5. Quaternary Sci Rev 30(1–2):130–146. doi: 10.1016/j.quascirev.2010.07.004Google Scholar
  113. Wang Y, Cheng H, Edwards RL, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z (2008) Millennial- and orbital-scale changes in the east asian monsoon over the past 224,000 years. Nature 451(7182):1090–1093. doi: 10.1038/nature06692Google Scholar
  114. Wanner H, Beer J, Bütikofer J, Crowley T, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan J, Küttel M, Müller S, Prentice I, Solomina O, Stocker T, Tarasoc P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quaternary Sci Rev 27:1791–1828Google Scholar
  115. Winckler G (1998) Radiogenes Helium im Ozean: Drei Fallstudien. PhD thesis, University of Heidelberg, GermanyGoogle Scholar
  116. Winckler G, Kipfer R, Aeschbach-Hertig W, Botz R, Schmidt M, Schuler S, Bayer R (2000) Sub sea floor boiling of Red Sea brines: new indication from noble gas data. Geochim Cosmochim Acta 64(9):1567–1575. doi: 10.1016/S0016-7037(99)00441-XGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. S. Brennwald
    • 1
    Email author
  • N. Vogel
    • 1
    • 2
  • Y. Scheidegger
    • 1
  • Y. Tomonaga
    • 1
  • D. M. Livingstone
    • 1
  • R. Kipfer
    • 1
    • 2
  1. 1.Department of Water Resources and Drinking WaterEawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
  2. 2.Institute for Geochemistry and PetrologySwiss Federal Institute of Technology Zurich (ETH)ZurichSwitzerland

Personalised recommendations