Noble Gas Thermometry in Groundwater Hydrology

  • Werner Aeschbach-HertigEmail author
  • D. Kip Solomon
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)


Concentrations of dissolved atmospheric noble gases in water constitute a thermometer, whose application to the groundwater archive provides a method of paleoclimate reconstruction. In addition, noble gases have found wide application as tracers in hydrogeology. This chapter reviews the historical development, the theoretical foundations, the sampling and analytical techniques, as well as the spectrum of applications of this important tool of tracer hydrology. A detailed account of currently available sampling techniques is given, as this information is of great practical importance but not fully available in the scientific literature. The analytical methods are better documented in the literature, although the many lab-specific details and constant development make it hard to provide an authoritative overview, so that this part is kept comparatively short. The focus of the chapter lies on the methods for data reduction and interpretation, which have undergone rapid and important development in the recent past. Nevertheless, in this respect still substantial research needs exist. Finally, this chapter provides an overview of applications of noble gases in groundwater hydrology, which range from the classical paleothermometry and the determination of other paleoclimate parameters such as humidity to various hydrological investigations, such as groundwater dating or the study of water origin and recharge conditions in hydrothermal, glaciated, alluvial, coastal, managed, and mountainous aquifer systems.


Recharge temperatures Paleoclimate Excess air Climate archives Hydrogeology 



We thank Martin Wieser for drawing Fig. 5, Fig. 7, Fig. 8, Fig. 9, Tim Schneider and Andreas Kreuzer for supplying the photographs of Fig. 2, and Lisa Bröder for technical help with the manuscript.


  1. Aeschbach-Hertig W, Beyerle U, Holocher J, Peeters F, Kipfer R (2002a) Excess air in ground water as a potential indicator of past environmental changes. In: IAEA (ed) Study of environmental change using isotope techniques IAEA, Vienna, C&S Papers Series 13, pp 174–183Google Scholar
  2. Aeschbach-Hertig W, El-Gamal H, Wieser M, Palcsu L (2008) Modeling excess air and degassing in groundwater by equilibrium partitioning with a gas phase. Water Resour Res 44:W08449. doi: 10.1029/2007WR006454CrossRefGoogle Scholar
  3. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (1999) Interpretation of dissolved atmospheric noble gases in natural waters. Water Resour Res 35:2779–2792Google Scholar
  4. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (2000) Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air. Nature 405:1040–1044Google Scholar
  5. Aeschbach-Hertig W, Stute M, Clark J, Reuter R, Schlosser P (2002b) A paleotemperature record derived from dissolved noble gases in groundwater of the Aquia Aquifer (Maryland, USA). Geochim Cosmochim Acta 66:797–817Google Scholar
  6. Althaus R, Klump S, Onnis A, Kipfer R, Purtschert R, Stauffer F, Kinzelbach W (2009) Noble gas tracers for characterisation of flow dynamics and origin of groundwater: a case study in Switzerland. J Hydrol 370:64–72Google Scholar
  7. Amos RT, Mayer KU (2006) Investigating the role of gas bubble formation and entrapment in contaminated aquifers: reactive transport modelling. J Cont Hydrol 87:123–154Google Scholar
  8. Amos RT, Mayer KU, Bekins BA, Delin GN, Williams RL (2005) Use of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface. Water Resour Res 41:W02001. doi: 10.01029/02004WR003433CrossRefGoogle Scholar
  9. Andrews JN, Fontes J-C, Aranyossy J-F, Dodo A, Edmunds WM, Joseph A, Travi Y (1994) The evolution of alkaline groundwaters in the continental intercalaire aquifer of the Irhazer Plain Niger. Water Resour Res 30:45–61Google Scholar
  10. Andrews JN, Goldbrunner JE, Darling WG, Hooker PJ, Wilson GB, Youngman MJ, Eichinger L, Rauert W, Stichler W (1985) A radiochemical, hydrochemical and dissolved gas study of groundwaters in the Molasse basin of Upper Austria. Earth Planet Sci Lett 73:317–332Google Scholar
  11. Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and palaeoclimatic trends. J Hydrol 41:233–252Google Scholar
  12. Ballentine CJ, Hall CM (1999) Determining paleotemperature and other variables by using an error-weighted, nonlinear inversion of noble gas concentrations in water. Geochim Cosmochim Acta 63:2315–2336Google Scholar
  13. Bard Y (1974) Nonlinear parameter estimation. Academic, New YorkGoogle Scholar
  14. Bartlett M, Chapman DS, Harris RN (2004) Snow and the ground temperature record of climate change. J Geophys Res 109:F04008. doi: 10.1029/2004JF000224CrossRefGoogle Scholar
  15. Bayer R, Schlosser P, Bönisch G, Rupp H, Zaucker F, Zimmek G (1989) Performance and blank components of a mass spectrometric system for routine measurement of helium isotopes and tritium by the 3He ingrowth method. Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathemathisch-naturwissenschaftliche Klasse, vol 5, pp 241–279Google Scholar
  16. Benson BB, Krause D (1976) Empirical laws for dilute aqueous solutions of nonpolar gases. J Chem Phys 64:689–709Google Scholar
  17. Beyerle U, Aeschbach-Hertig W, Hofer M, Imboden DM, Baur H, Kipfer R (1999a) Infiltration of river water to a shallow aquifer investigated with 3H/3He, noble gases and CFCs. J Hydrol 220:169–185Google Scholar
  18. Beyerle U, Aeschbach-Hertig W, Imboden DM, Baur H, Graf T, Kipfer R (2000) A mass spectrometric system for the analysis of noble gases and tritium from water samples. Environ Sci Technol 34:2042–2050Google Scholar
  19. Beyerle U, Aeschbach-Hertig W, Peeters F, Kipfer R, Purtschert R, Lehmann B, Loosli HH, Love A (1999b) Noble gas data from the Great Artesian Basin provide a temperature record of Australia on time scales of 105 years. In: IAEA (ed) Isotope techniques in water resources development and management IAEA, Vienna, IAEA-CSP-2/C: 97-103Google Scholar
  20. Beyerle U, Purtschert R, Aeschbach-Hertig W, Imboden DM, Loosli HH, Wieler R, Kipfer R (1998) Climate and groundwater recharge during the last glaciation in an ice-covered region. Science 282:731–734Google Scholar
  21. Beyerle U, Rueedi J, Leuenberger M, Aeschbach-Hertig W, Peeters F, Kipfer R, Dodo A (2003) Evidence for periods of wetter and cooler climate in the Sahel between 6 and 40 kyr BP derived from groundwater. Geophys Res Lett 30:1173. doi: 10.1029/2002GL016310CrossRefGoogle Scholar
  22. Blaser P (2007) Tracermethoden in der Hydrologie: Kombination verschiedener Methoden und Anwendungen am Beispiel des Ledo-Paniselian-Aquifers in Belgien. PhD thesis, University of GhentGoogle Scholar
  23. Blaser PC, Kipfer R, Loosli HH, Walraevens K, Van Camp M, Aeschbach-Hertig W (2010) A 40 ka record of temperature and permafrost conditions in northwestern Europe from noble gases in the Ledo-Paniselian Aquifer (Belgium). J Quaternary Sci 25:1038–1044Google Scholar
  24. Blavoux B, Dray M, Fehri A, Olive P, Gröning M, Sonntag C, Hauquin J-P, Pelissier G, Pouchan P (1993) Palaeoclimatic and hydrodynamic approach to the aquitaine basin deep aquifer (France) by means of environmental isotopes and noble gases. In: IAEA (ed) Isotope techniques in the study of past and current environmental changes in the hydrosphere and the atmosphere IAEA, Vienna, IAEA-SM-329/60: 293-305Google Scholar
  25. Blicher-Mathiesen G, McCarty GW, Nielsen LP (1998) Denitrification and degassing in groundwater estimated from dissolved dinitrogen and argon. J Hydrol 208:16–24Google Scholar
  26. Bouchaou L, Michelot JL, Vengosh A, Hsissou Y, Qurtobi M, Gaye CB, Bullen TD, Zuppi GM (2008) Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss-Massa aquifer, southwest of Morocco. J Hydrol 352:267–287Google Scholar
  27. Bourg IC, Sposito G (2008) Isotopic fractionation of noble gases by diffusion in liquid water: Molecular dynamics simulations and hydrologic applications. Geochim Cosmochim Acta 72:2237–2247Google Scholar
  28. Broecker W (1996) Glacial climate in the tropics. Science 272:1902–1904Google Scholar
  29. Capasso G, Inguaggiato S (1998) A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Appl Geochem 13:631–642Google Scholar
  30. Carrera-Hernández JJ, Gaskin SJ (2008) Spatio-temporal analysis of potential aquifer recharge: application to the Basin of Mexico. J Hydrol 353:228–246Google Scholar
  31. Castro MC, Hall CM, Patriarche D, Goblet P, Ellis BR (2007) A new noble gas paleoclimate record in Texas—basic assumptions revisited. Earth Planet Sci Lett 257:170–187Google Scholar
  32. Cederberg JR, Gardner PM, Thiros SA (2009) Hydrology of northern Utah Valley, Utah County, Utah, 1975–2005 US. Geol Surv Sci Invest Rep 2008–5197:114Google Scholar
  33. Cey BD (2009) On the accuracy of noble gas recharge temperatures as a paleoclimate proxy. J Geophys Res 114:D04107. doi: 10.1029/2008JD010438CrossRefGoogle Scholar
  34. Cey BD, Hudson GB, Moran JE, Scanlon BR (2008) Impact of artificial recharge on dissolved noble gases in groundwater in California. Environ Sci Technol 42:1017–1023Google Scholar
  35. Cey BD, Hudson GB, Moran JE, Scanlon BR (2009) Evaluation of noble gas recharge temperatures in a shallow unconfined aquifer. Ground Water 47:646–659Google Scholar
  36. Ciężkowski W, Gröning M, Leśniak PM, Weise SM, Zuber A (1992) Origin and age of thermal waters in Cieplice Spa, Sudeten, Poland, inferred from isotope, chemical and noble gas data. J Hydrol 140:89–117Google Scholar
  37. Clark JF, Davisson ML, Hudson GB, Macfarlane PA (1998) Noble gases, stable isotopes, and radiocarbon as tracers of flow in the Dakota aquifer, Colorado and Kansas. J Hydrol 211:151–167Google Scholar
  38. Clark JF, Hudson GB, Avisar D (2005) Gas transport below artificial recharge ponds: Insights from dissolved noble gases and a dual gas (SF6 and 3He) tracer experiment. Environ Sci Technol 39:3939–3945Google Scholar
  39. Clark JF, Stute M, Schlosser P, Drenkard S, Bonani G (1997) A tracer study of the Floridan aquifer in southeastern Georgia: Implications for groundwater flow and paleoclimate. Water Resour Res 33:281–289Google Scholar
  40. Clarke WB, Jenkins WJ, Top Z (1976) Determination of tritium by mass spectrometric measurement of 3He. Int J Appl Radiat Isotopes 27:515–522Google Scholar
  41. Corcho Alvarado JA, Barbecot F, Purtschert R, Gillon M, Aeschbach-Hertig W, Kipfer R (2009) European climate variations over the past half-millennium reconstructed from groundwater. Geophys Res Lett 36:L15703. doi: 10.1029/2009GL038826CrossRefGoogle Scholar
  42. Crowley TJ (2000) CLIMAP SSTs re-revisited. Clim Dyn 16:241–255Google Scholar
  43. Dennis F, Andrews JN, Parker A, Poole J, Wolf M (1997) Isotopic and noble gas study of Chalk groundwater in the London Basin, England. Appl Geochem 12:763–773Google Scholar
  44. Edmunds WM, Fellman E, Goni IB (1999) Lakes, groundwater and paleohydrology in the Sahel of NE Nigeria: evidence from hydrogeochemistry. J Geol Soc London 156:345–355Google Scholar
  45. Edmunds WM, Ma JZ, Aeschbach-Hertig W, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China. Appl Geochem 21:2148–2170Google Scholar
  46. Farrera I, Harrison SP, Prentice IC, Ramstein G, Guiot J, Bartlein PJ, Bonnefille R, Bush M, Cramer W, von Grafenstein U, Holmgren K, Hooghiemstra H, Hope G, Jolly D, Lauritzen SE, Ono Y, Pinot S, Stute M, Yu G (1999) Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake levels and geochemistry. Clim Dynam 15:823–856Google Scholar
  47. Fortuin NPM, Willemsen A (2005) Exsolution of nitrogen and argon by methanogenesis in Dutch ground water. J Hydrol 301:1–13Google Scholar
  48. Gardner P, Solomon DK (2009) An advanced passive diffusion sampler for the determination of dissolved gas concentrations. Water Resour Res 45:W06423. doi: 10.1029/2008WR007399CrossRefGoogle Scholar
  49. Gardner WP, Susong DD, Solomon DK, Heasler HP (2010) Using noble gases measured in spring discharge to trace hydrothermal processes in the Norris Geyser Basin, Yellowstone National Park, U.S.A. J Volcanol Geoth Res 198:394–404Google Scholar
  50. Geyh MA (2000) An overview of 14C analysis in the study of groundwater. Radiocarbon 42:99–114Google Scholar
  51. Gill AE (1982) Atmosphere-ocean dynamics. Academic, New YorkGoogle Scholar
  52. Greene S, Battye N, Clark I, Kotzer T, Bottomley D (2008) Canadian Shield brine from the Con Mine, Yellowknife, NT, Canada: noble gas evidence for an evaporated Palaeozoic seawater origin mixed with glacial meltwater and Holocene recharge. Geochim Cosmochim Acta 72:4008–4019Google Scholar
  53. Hall CM, Castro MC, Lohmann KC, Ma L (2005) Noble gases and stable isotopes in a shallow aquifer in southern Michigan: Implications for noble gas paleotemperature reconstructions for cool climates. Geophys Res Lett 32:L18404. doi: 10.1029/2005GL023582CrossRefGoogle Scholar
  54. Hamme RC, Emerson SR (2004) The solubility of neon, nitrogen and argon in distilled water and seawater. Deep-Sea Res 51:1517–1528Google Scholar
  55. Harris RN, Chapman DS (2001) Midlatitude (30–60°N) climatic warming inferred by combining borehole temperatures with surface air temperatures. Geophys Res Lett 28:747–750Google Scholar
  56. Heaton THE, Talma AS, Vogel JC (1983) Origin and history of nitrate in confined groundwater in the western Kalahari. J Hydrol 62:243–262Google Scholar
  57. Heaton THE, Talma AS, Vogel JC (1986) Dissolved gas paleotemperatures and 18O variations derived from groundwater near Uitenhage South Africa. Quaternary Res 25:79–88Google Scholar
  58. Heaton THE, Vogel JC (1981) “Excess air” in groundwater. J Hydrol 50:201–216Google Scholar
  59. Heilweil VM, Solomon DK, Perkins KS, Ellett KM (2004) Gas-partitioning tracer test to quantify trapped gas during recharge. Ground Water 42:589–600Google Scholar
  60. Heilweil VM, Marston TM (2011) Assessment of managed aquifer recharge from sand hollow reservoir, Washington County, Utah, Updated to Conditions in 2010. U. S. Geological Survey Scientific Investigations Report 2011-5142Google Scholar
  61. Herzberg O, Mazor E (1979) Hydrological applications of noble gases and temperature measurements in underground water systems: examples from Israel. J Hydrol 41:217–231Google Scholar
  62. Hillel D (1980) Fundamentals of soil physics. Academic, New YorkGoogle Scholar
  63. Hofer M, Kipfer R (2007) Simultaneous determination of noble gases, N2, O2, SF6, CFC-11 and CFC-12 in water by GC-MS/ECD. In: Proceedings of the 4th mini conference on noble gases in the hydrosphere and in natural gas reservoirs, GFZ Potsdam, Germany, p 68. doi: 10.2312/GFZ.mga.011
  64. Holocher J, Peeters F, Aeschbach-Hertig W, Hofer M, Brennwald M, Kinzelbach W, Kipfer R (2002) Experimental investigations on the formation of excess air in quasi-saturated porous media. Geochim Cosmochim Acta 66:4103–4117Google Scholar
  65. Holocher J, Peeters F, Aeschbach-Hertig W, Kinzelbach W, Kipfer R (2003) Kinetic model of gas bubble dissolution in groundwater and its implications for the dissolved gas composition. Environ Sci Technol 37:1337–1343Google Scholar
  66. Ingram RGS, Hiscock KM, Dennis PF (2007) Noble gas excess air applied to distinguish groundwater recharge conditions. Environ Sci Technol 41:1949–1955Google Scholar
  67. Jean-Baptiste P, Mantisi F, Dapoigny A, Stievenard M (1992) Design and performance of a mass spectrometric facility for measuring helium isotopes in natural waters and for low-level tritium determination by the 3He ingrowth method. Int J Appl Radiat Isotopes 43:881Google Scholar
  68. Kalin RM (2000) Radiocarbon dating of groundwater systems. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology, pp 111–144Google Scholar
  69. Kebede S, Travi Y, Asrat A, Alemayehu T, Ayenew T, Tessema Z (2008) Groundwater origin and flow along selected transects in Ethiopian rift volcanic aquifers. Hydrogeol J 16:55–73Google Scholar
  70. Kipfer R, Aeschbach-Hertig W, Peeters F, Stute M (2002) Noble gases in lakes and ground waters. In: Porcelli D, Ballentine C, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, Reviews in Mineralogy and Geochemistry, vol 47, pp 615–700Google Scholar
  71. Kloppmann W, Dever L, Edmunds WM (1998) Residence time of chalk groundwaters in the Paris Basin and the North German Basin: a geochemical approach. Appl Geochem 13:593–606Google Scholar
  72. Kluge T, Marx T, Scholz D, Niggemann S, Mangini A, Aeschbach-Hertig W (2008) A new tool for palaeoclimate reconstruction: Noble gas temperatures from fluid inclusions in speleothems. Earth Planet Sci Lett 269:407–414Google Scholar
  73. Klump S, Cirpka OA, Surbeck H, Kipfer R (2008a) Experimental and numerical studies on excess-air formation in quasi-saturated porous media. Water Resour Res 44:W05402. doi: 10.1029/2007WR006280CrossRefGoogle Scholar
  74. Klump S, Grundl T, Purtschert R, Kipfer R (2008b) Groundwater and climate dynamics derived from noble gas, 14C, and stable isotope data. Geology 36:395–398Google Scholar
  75. Klump S, Kipfer R, Cirpka OA, Harvey CF, Brennwald MS, Ashfaque KN, Badruzzaman ABM, Hug SJ, Imboden DM (2006) Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium. Environ Sci Technol 40:243–250Google Scholar
  76. Klump S, Tomonaga Y, Kienzler P, Kinzelbach W, Baumann T, Imboden DM, Kipfer R (2007) Field experiments yield new insights into gas exchange and excess air formation in natural porous media. Geochim Cosmochim Acta 71:1385–1397Google Scholar
  77. Kohfahl C, Sprenger C, Herrera JB, Meyer H, Chacón FF, Pekdeger A (2008) Recharge sources and hydrogeochemical evolution of groundwater in semiarid and karstic environments: a field study in the Granada Basin (southern Spain). Appl Geochem 23:846–862Google Scholar
  78. Kooi H (2008) Spatial variability in subsurface warming over the last three decades; insight from repeated borehole temperature measurements in The Netherlands. Earth Planet Sci Lett 270:86–94Google Scholar
  79. Kreuzer AM, von Rohden C, Friedrich R, Chen ZY, Shi JS, Hajdas I, Kipfer R, Aeschbach-Hertig W (2009) A record of temperature and monsoon intensity over the past 40 kyr from groundwater in the North China Plain. Chem Geol 259:168–180Google Scholar
  80. Kulongoski JT, Hilton DR (2002) A quadrupole-based mass spectrometric system for the determination of noble gas abundances in fluids. Geochem Geophys Geosyst , vol 3. doi: 10.1029/2001GC000267Google Scholar
  81. Kulongoski JT, Hilton DR, Izbicki JA, Belitz K (2009) Evidence for prolonged El Nino-like conditions in the Pacific during the Late Pleistocene: a 43 ka noble gas record from California groundwaters. Quaternary Sci Rev 28:2465–2473Google Scholar
  82. Kulongoski JT, Hilton DR, Selaolo ET (2004) Climate variability in the Botswana Kalahari from the late Pleistocene to the present day. Geophys Res Lett 31:L10204. doi: 10.1029/2003GL019238CrossRefGoogle Scholar
  83. Lachenbruch AH, Marshall BV (1986) Climate change: geothermal evidence from permafrost in the Alaskan Arctic. Science 234:689–696Google Scholar
  84. Lavastre V, La Salle CL, Michelot JL, Giannesini S, Benedetti L, Lancelot J, Lavielle B, Massault M, Thomas B, Gilabert E, Bourles D, Clauer N, Agrinier P (2010) Establishing constraints on groundwater ages with Cl-36, C-14, H-3, and noble gases: a case study in the eastern Paris basin, France. Appl Geochem 25:123–142Google Scholar
  85. Lehmann BE, Davis SN, Fabryka-Martin JT (1993) Atmospheric and subsurface sources of stable and radioactive nuclides used for groundwater dating. Water Resour Res 29:2027–2040Google Scholar
  86. Lehmann BE, Love A, Purtschert R, Collon P, Loosli HH, Kutschera W, Beyerle U, Aeschbach-Hertig W, Kipfer R, Frape SK, Herczeg A, Moran J, Tolstikhin I, Gröning M (2003) A comparison of groundwater dating with 81Kr, 36Cl and 4He in four wells of the Great Artesian Basin, Australia. Earth Planet Sci Lett 211:237–250Google Scholar
  87. Lippmann J, Stute M, Torgersen T, Moser DP, Hall JA, Lin L, Borcsik M, Bellamy RES, Onstott TC (2003) Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa. Geochim Cosmochim Acta 67:4597–4619Google Scholar
  88. Loosli HH, Aeschbach-Hertig W, Barbecot F, Blaser P, Darling WG, Dever L, Edmunds WM, Kipfer R, Purtschert R, Walraevens K (2001) Isotopic methods and their hydrogeochemical context in the investigation of palaeowaters. In: Edmunds WM, Milne CJ (eds) Palaeowaters in Coastal Europe evolution of groundwater since the late Pleistocene, Special Publications on the Geological Society, vol 189, pp 193–212Google Scholar
  89. Lott DE (2001) Improvements in noble gas separation methodology: a nude cryogenic trap. Geochem Geophys Geosyst, vol 2. doi: 10.1029/2001GC000202Google Scholar
  90. Lott DE, Jenkins WJ (1984) An automated cryogenic charcoal trap system for helium isotope mass spectrometry. Rev Sci Instrum 55:1982–1988Google Scholar
  91. Ma L, Castro MC, Hall CM (2004) A late Pleistocene–Holocene noble gas paleotemperature record in southern Michigan. Geophys Res Lett 31:L23204. doi: 10.1029/2004GL021766CrossRefGoogle Scholar
  92. Magruder IA, Woessner WW, Running SW (2009) Ecohydrologic process modeling of mountain block groundwater recharge. Ground Water 47:774–785Google Scholar
  93. Mann ME, Schmidt GA, Miller SK, LeGrande AN (2009) Potential biases in inferring Holocene temperature trends from long-term borehole information. Geophys Res Lett 36:L05708. doi: 10.1029/2008GL036354CrossRefGoogle Scholar
  94. Manning AH (2011) Mountain-block recharge, present and past, in the eastern Española Basin, New Mexico, USA. Hydrogeol J. doi: 10.1007/s10040-010-0696-8CrossRefGoogle Scholar
  95. Manning AH, Caine JS (2007) Groundwater noble gas, age, and temperature signatures in an Alpine watershed: valuable tools in conceptual model development. Water Resour Res 43:W04404. doi: 10.1029/2006WR005349CrossRefGoogle Scholar
  96. Manning AH, Solomon DK (2003) Using noble gases to investigate mountain-front recharge. J Hydrol 275:194–207Google Scholar
  97. Manning AH, Solomon DK (2005) An integrated environmental tracer approach to characterizing groundwater circulation in a mountain block. Water Resour Res 41:W12412. doi: 10.1029/2005WR004178CrossRefGoogle Scholar
  98. Manning AH, Solomon DK, Sheldon AL (2003) Applications of a total dissolved gas pressure probe in ground water studies. Ground Water 41:440–448Google Scholar
  99. Mazor E (1972) Paleotemperatures and other hydrological parameters deduced from gases dissolved in groundwaters, Jordan Rift Valley, Israel. Geochim Cosmochim Acta 36:1321–1336Google Scholar
  100. Mercury L, Azaroual M, Zeyen H, Tardy Y (2003) Thermodynamic properties of solutions in metastable systems under negative or positive pressures. Geochim Cosmochim Acta 67:1769–1785Google Scholar
  101. Mercury L, Pinti DL, Zeyen H (2004) The effect of the negative pressure of capillary water on atmospheric noble gas solubility in ground water and palaeotemperature reconstruction. Earth Planet Sci Lett 223:147–161Google Scholar
  102. Mochalski P, Lasa J, Śliwka I (2006) Simultaneous Determination of Ne, Ar, and N2 in Groundwater by Gas Chromatography. Chem Anal 51:825–831Google Scholar
  103. Mochalski P, Sliwka I, Lasa J (2007) Simultaneous determination of Ne, Ar, SF6, CFC-11 and CFC-12 in groundwater by gas chromatography. In: 4th mini conference on noble gases in the hydrosphere and in natural gas reservoirs, GFZ Potsdam, Germany, pp 86–87. doi: 10.2312/GFZ.mga.015
  104. Morrissey SK, Clark JF, Bennett M, Richardson E, Stute M (2010) Groundwater reorganization in the Floridan aquifer following Holocene sea-level rise. Nat Geosci 3:683–687Google Scholar
  105. Oana S (1957) Bestimmung von Argon in besonderem Hinblick auf gelöste Gase in natürlichen Gewässern. J Earth Sci Nagoya Univ 5:103–105Google Scholar
  106. Osenbrück K, Stadler S, Sültenfuß J, Suckow AO, Weise SM (2009) Impact of recharge variations on water quality as indicated by excess air in groundwater of the Kalahari, Botswana. Geochim Cosmochim Acta 73:911–922Google Scholar
  107. Peeters F, Beyerle U, Aeschbach-Hertig W, Holocher J, Brennwald MS, Kipfer R (2003) Improving noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/22Ne ratios. Geochim Cosmochim Acta 67:587–600Google Scholar
  108. Phillips FM, Peeters LA, Tansey MK, Davis SN (1986) Paleoclimatic inferences from an isotopic investigation of groundwater in the central San Juan Basin, New Mexico. Quaternary Res 26:179–193Google Scholar
  109. Pinti DL, Marty B, Andrews JN (1997) Atmosphere-derived noble gas evidence for the preservation of ancient waters in sedimentary basins. Geology 25:111–114Google Scholar
  110. Pinti DL, van Drom E (1998) PALEOTEMP: A MATHEMATICA program for evaluating paleotemperatures from the concentration of atmosphere-derived noble gases in ground water. Comput Geosci 24:33–41Google Scholar
  111. Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004a) Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico. US geological survey on water resources investigation report, p 395Google Scholar
  112. Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004b) Hydrochemical tracers in the middle Rio Grande Basin, USA: 1. conceptualization of groundwater flow. Hydrogeol J 12:359–388Google Scholar
  113. Poole JC, McNeill GW, Langman SR, Dennis F (1997) Analysis of noble gases in water using a quadrupole mass spectrometer in static mode. Appl Geochem 12:707–714Google Scholar
  114. Powell WG, Chapman DS, Balling N, Beck AE (1988) Continental heat flow density. In: Haenel R, Stegena L, Rybach L (eds) Handbook of terrestrial heat-flow density determination, pp 167–222Google Scholar
  115. Press WH (1995) Numerical recipes in C, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  116. Rudolph J, Rath HK, Sonntag C (1984) Noble gases and stable isotopes in 14C-dated palaeowaters from central Europa and the Sahara. In: IAEA (ed) Isotope hydrology 1983 IAEA, Vienna, IAEA-SM-270/17: 467-477Google Scholar
  117. Sanford WE, Shropshire RG, Solomon DK (1996) Dissolved gas tracers in groundwater: simplified injection, sampling, and analysis. Water Resour Res 32:1635–1642Google Scholar
  118. Scheidegger Y, Baur H, Brennwald MS, Fleitmann D, Wieler R, Kipfer R (2010) Accurate analysis of noble gas concentrations in small water samples and its application to fluid inclusions in stalagmites. Chem Geol 272:31–39Google Scholar
  119. Sheldon AL (2002) Diffusion of radiogenic helium in shallow groundwater: implications for crustal degassing. PhD thesis, University of UtahGoogle Scholar
  120. Singleton MJ, Moran JE (2010) Dissolved noble gas and isotopic tracers reveal vulnerability of groundwater in a small, high-elevation catchment to predicted climate changes. Water Resour Res 46: W00F06. doi: 10.1029/2009WR008718
  121. Smith GD, Newhall F, Robinson LH, Swanson D (1964) Soil temperature regimes: their characteristics and predictability USDA, Soil Conservation Service Report SCS-TP-144Google Scholar
  122. Smith SP, Kennedy BM (1983) The solubility of noble gases in water and in NaCl brine. Geochim Cosmochim Acta 47:503–515Google Scholar
  123. Solomon DK, Cole E, Leising JF (2011) Excess air during aquifer storage and recovery in an arid basin (Las Vegas Valley, USA). Hydrogeol J 19:187–194Google Scholar
  124. Solomon DK, Genereux DP, Plummer LN, Busenberg E (2010) Testing mixing models of old and young groundwater in a tropical lowland rain forest with environmental tracers. Water Resour Res 46:W04518. doi: 10.1029/2009WR008341CrossRefGoogle Scholar
  125. Stanley RHR, Baschek B, Lott DE III, Jenkins WJ (2009) A new automated method for measuring noble gases and their isotopic ratios in water samples. Geochem Geophys Geosyst 10:Q05008. doi: 10.1029/2009GC002429CrossRefGoogle Scholar
  126. Stute M, Clark JF, Schlosser P, Broecker WS (1995a) A 30’000 yr continental paleotemperature record derived from noble gases dissolved in groundwater from the San Juan Basin, New Mexico. Quaternary Res 43:209–220Google Scholar
  127. Stute M, Deák J (1989) Environmental isotope study (14C, 13C, 18O, D, noble gases) on deep groundwater circulation systems in Hungary with reference to paleoclimate. Radiocarbon 31:902–918Google Scholar
  128. Stute M, Forster M, Frischkorn H, Serejo A, Clark JF, Schlosser P, Broecker WS, Bonani G (1995b) Cooling of tropical Brazil (5 °C) during the last glacial maximum. Science 269:379–383Google Scholar
  129. Stute M, Schlosser P (1993) Principles and applications of the noble gas paleothermometer. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records, AGU Geophysical Monograph Series, vol 78, pp 89–100Google Scholar
  130. Stute M, Schlosser P (2000) Atmospheric noble gases. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology, pp 349–377Google Scholar
  131. Stute M, Schlosser P, Clark JF, Broecker WS (1992) Paleotemperatures in the Southwestern United States derived from noble gases in ground water. Science 256:1000–1003Google Scholar
  132. Stute M, Talma AS (1998) Glacial temperatures and moisture transport regimes reconstructed from noble gases and delta 18O, Stampriet aquifer, Namibia. In: Isotope techniques in the study of environmental change, Vienna, Austria, IAEA-SM-349: 307–318Google Scholar
  133. Stute M, Zheng Y, Schlosser P, Horneman A, Dhar RK, Datta S, Hoque MA, Seddique AA, Shamsudduha M, Ahmed KM, van Green A (2007) Hydrological control of as concentrations in Bangladesh groundwater. Water Resour Res 43:W09417. doi: 10.1029/2005WR004499CrossRefGoogle Scholar
  134. Sugisaki R (1961) Measurement of effective flow velocity of ground water by means of dissolved gases. Am J Sci 259:144–153Google Scholar
  135. Sültenfuß J, Roether W, Rhein M (2009) The Bremen mass spectrometric facility for the measurement of helium isotopes, neon, and tritium in water. Isotopes Environ Health Stud 45:83–95Google Scholar
  136. Sun T, Hall CM, Castro MC (2010) Statistical properties of groundwater noble gas paleoclimate models: Are they robust and unbiased estimators? Geochem Geophys Geosyst 11:Q02002. doi: 10.1029/2009GC002717CrossRefGoogle Scholar
  137. Sun T, Hall CM, Castro MC, Lohmann KC, Goblet P (2008) Excess air in the noble gas groundwater paleothermometer: a new model based on diffusion in the gas phase. Geophys Res Lett 35:L19401. doi: 10.1029/2008GL035018CrossRefGoogle Scholar
  138. Takahata N, Igarashi G, Sano Y (1997) Continuous monitoring of dissolved gas concentrations in groundwater using a quadrupole mass spectrometer. Appl Geochem 12:377–382Google Scholar
  139. Thomas JM, Hudson GB, Stute M, Clark JF (2003) Noble gas loss may indicate groundwater flow across flow barriers in southern Nevada. Environ Geol 43:568–579Google Scholar
  140. Top Z, Eismont WC, Clarke WB (1987) Helium isotope effect and solubility of helium and neon in distilled water and seawater. Deep-Sea Res 34:1139–1148Google Scholar
  141. Vaikmäe R, Vaullner L, Loosli HH, Blaser PC, Juillard-Tardent M (2001) Paleogroundwater of glacial origin in the Cambrian-Vendian Aquifer of northern Estonia. In: Edmunds WM, Milne CJ (eds) Palaeowaters in Coastal Europe: evolution of groundwater since the late Pleistocene, Special Publications on the Geological Society, vol 189, pp 17–22Google Scholar
  142. Varsányi I, Palcsu L, Kovács LÓ (2011) Groundwater flow system as an archive of palaeotemperature: Noble gas, radiocarbon, stable isotope and geochemical study in the Pannonian Basin, Hungary. Appl Geochem 26:91–104Google Scholar
  143. Visser A, Broers HP, Bierkens MFP (2007) Dating degassed groundwater with 3H/3He. Water Resour Res 43:W10434. doi: 10.1029/2006WR005847CrossRefGoogle Scholar
  144. von Rohden C, Kreuzer A, Chen ZY, Kipfer R, Aeschbach-Hertig W (2010) Characterizing the recharge regime of the strongly exploited aquifers of the North China Plain by environmental tracers. Water Resour Res 46:W05511. doi: 10.1029/2008WR007660CrossRefGoogle Scholar
  145. Weiss RF (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res 17:721–735Google Scholar
  146. Weiss RF (1971) Solubility of helium and neon in water and seawater. J Chem Eng Data 16:235–241Google Scholar
  147. Weiss RF, Kyser TK (1978) Solubility of krypton in water and seawater. J Chem Eng Data 23:69–72Google Scholar
  148. Weyhenmeyer CE, Burns SJ, Waber HN, Aeschbach-Hertig W, Kipfer R, Loosli HH, Matter A (2000) Cool glacial temperatures and changes in moisture source recorded in Oman groundwaters. Science 287:842–845Google Scholar
  149. Wieser M, Aeschbach-Hertig W, Schneider T, Deshpande RD, Gupta K (2011) A temperature and monsoon record derived from environmental tracers in groundwater of Northwest India. In: Proceedings of the international symposium on isotopes in hydrology, marine ecosystems, and climate change studies IAEA, Monaco, IAEA-CN-186-029Google Scholar
  150. Wilhelm E, Battino R, Wilcock RJ (1976) Low-pressure solubility of gases in liquid water. Chem Rev 77:219–262Google Scholar
  151. Wilson GB, McNeill GW (1997) Noble gas recharge temperatures and the excess air component. Appl Geochem 12:747–762Google Scholar
  152. Wilson JL, Guan H (2004) Mountain-block hydrology and mountain-front recharge. In: Hogan JF, Phillips FM, Scanlon BR (eds) Groundwater recharge in a desert environment: the southwestern United States, pp 113–137Google Scholar
  153. Zartman RE, Wasserburg GJ, Reynolds JH (1961) Helium, argon, and carbon in some natural gases. J Geophys Res 66:277–306Google Scholar
  154. Zhu C, Kipfer R (2010) Noble gas signatures of high recharge pulses and migrating jet stream in the late Pleistocene over Black Mesa, Arizona, United States. Geology 38:83–86Google Scholar
  155. Zuber A, Weise SM, Motyka J, Osenbrück K, Rózanski K (2004) Age and flow pattern of groundwater in a Jurassic limestone aquifer and related Tertiary sands derived from combined isotope, noble gas and chemical data. J Hydrol 286:87–112Google Scholar
  156. Zuber A, Weise SM, Osenbrück K (1997) Origin and age of saline waters in Busko Spa (Southern Poland) determined by isotope, noble gas and hydrochemical methods: Evidence of interglacial and pre-Quaternary warm climate recharges. Appl Geochem 12:643–660Google Scholar
  157. Zuber A, Weise SM, Osenbrück K, Grabczak J, Ciężkowski W (1995) Age and recharge area of thermal waters in Ladek Spa (Sudeten, Poland) deduced from environmental isotope and noble gas data. J Hydrol 167:327–349Google Scholar
  158. Zuber A, Witczak S, Rozanski K, Sliwka I, Opoka M, Mochalski P, Kuc T, Karlikowska J, Kania J, Jackowicz-Korczynski M, Dulinski M (2005) Groundwater dating with 3H and SF6 in relation to mixing patterns, transport modelling and hydrochemistry. Hydrol Process 19:2247–2275Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für UmweltphysikHeidelberg UniversityHeidelbergGermany
  2. 2.University of UtahSalt Lake CityUSA

Personalised recommendations