Advertisement

Noble Gases in Seawater as Tracers for Physical and Biogeochemical Ocean Processes

  • Rachel H. R. StanleyEmail author
  • William J. Jenkins
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

Noble gases are biologically and chemically inert, making them excellent tracers for physical processes. There are 5 stable noble gases: He, Ne, Ar, Kr, and Xe, with a range of physicochemical properties; the diffusivities of the noble gases in seawater differ by approximately a factor of 5 and the solubilities of the noble gases in seawater differ by approximately a factor of 10. This broad range in physicochemical characteristics leads to differing response to physical forcing. Thus, measurements of multiple noble gases made concurrently allow quantification of many physical processes. In seawater studies, noble gas measurements have been used to investigate air-sea gas exchange, allowing explicit separation of the bubble component from the diffusive gas exchange component, and to study equilibration during deep water formation. Argon has been used to quantify diapycnal mixing and the heavier noble gases could be useful in such studies as well. Helium, Ne, and Ar have yielded insights on ocean-cryospheric processes such as sea ice formation and basal melting of glaciers. The isotope3 He has been used extensively in studies of ocean circulation, and also for quantifying ocean-lithospheric interactions. Additionally, noble gases can be combined with biologically active gases, such as O2 or N2, in order to quantify rates of biological production and denitrification.

References

  1. Andrews JN (1985) The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chem Geol 49:339–351Google Scholar
  2. Axford WI (1968) The polar wind and the terrestrial helium budget. J Geophys Res 73:6855–6859Google Scholar
  3. Benson BB, Krause D Jr (1980) Isotopic fractionation of helium during solution: a probe for the liquid state. J Solution Chem 9:895–909Google Scholar
  4. Beyerle U, Aeschbach-Hertig W, Imboden DM, Baur H, Graf T, Kipfer R (2000) A mass spectrometric system for the analysis of noble gases and tritium from water samples. Environ Sci Technol 34(10):2042–2050Google Scholar
  5. Bianchi D, Sarmiento JL, Gnanadesikan A, Key RM, Schlosser P, Newton R (2010) Low helium flux from the mantle inferred from simulations of oceanic helium isotope data. Earth Planet Sci Lett 297:379–386Google Scholar
  6. Bieri RH, Koide M, Goldberg ED (1964) Noble gases in seawater. Science 146(3647):1035–1037Google Scholar
  7. Bieri RH, Koide M, Goldberg ED (1966) The noble gas contents of Pacific seawaters. J Geophysical Research 71:5243–5265Google Scholar
  8. Bieri RH, Koide M, Goldberg ED (1967) Geophysical implications of excess helium found in Pacific waters. J Geophys Res 72(10):2497–2511Google Scholar
  9. Boyle E, Jenkins W (2008) Hydrothermal iron in the deep western South Pacific. Geochim Cosmochim Acta 72(12):A107–A107Google Scholar
  10. Bryan GH (1901) The kinetic theory of planetary atmospheres. Philos Trans R Soc (London) 196(1):1–24Google Scholar
  11. Cassar N, Barnett BA, Bender ML, Kaiser J, Hamme RC, Tilbrook B (2009) Continuous high-frequency dissolved O-2/Ar measurements by equilibrator inlet mass spectrometry. Anal Chem 81(5):1855–1864Google Scholar
  12. Cassar N, Bender ML, Barnett BA, Fan S, Moxim WJ, Levy H, Tilbrook B (2007) The Southern Ocean biological response to Aeolian iron deposition. Science 317(5841):1067–1070Google Scholar
  13. Chang BX, Devol AH, Emerson S (2010) Denitrification and the nitrogen gas excess in the eastern tropical South Pacific oxygen deficient zone. Deep-Sea Res Part I-Oceanogr Res Pap 57(9):1092–1101. doi: 10.1016/j.dsr.2010.05.009CrossRefGoogle Scholar
  14. Clarke WB, Beg MA, Craig H (1969) Excess 3He in the sea: evidence for terrestrial primordial helium. Earth Planet Sci Lett 6:213–220Google Scholar
  15. Codispoti LA (2007) An oceanic fixed nitrogen sink exceeding 400 Tg Na(−1) vs the concept of homeostasis in the fixed-nitrogen inventory. Biogeosciences 4(2):233–253Google Scholar
  16. Cook SR (1902) The permanency of planetary atmospheres, according to the kinetic theory of gases. Mon Weather Rev 52(2):401–407Google Scholar
  17. Craig H, Clarke WB (1970) Oceanic 3He: contribution from cosmogenic tritium. Earth Planet Sci Lett 9:45–48Google Scholar
  18. Craig H, Hayward T (1987) Oxygen supersaturation in the ocean: biological versus physical contributions. Science 235:199–202Google Scholar
  19. Craig H, Lal D (1961) The production rate of natural tritium. Tellus 13:85–105Google Scholar
  20. Devol AH, Uhlenhopp AG, Naqvi SWA, Brandes JA, Jayakumar DA, Naik H, Gaurin S, Codispoti LA, Yoshinari T (2006) Denitrification rates and excess nitrogen gas concentrations in the Arabian Sea oxygen deficient zone. Deep-Sea Res Part I-Oceanogr Res Pap 53(9):1533–1547. doi: 10.1016/j.dsr.2006.07.005CrossRefGoogle Scholar
  21. Doney SC, Glover DM, Jenkins WJ (1992) A model function of the global bomb-tritium distribution in precipitation, 1960–1986. J Geophys Res 97:5481–5492Google Scholar
  22. Doney SC, Jenkins WJ, Bullister JL (1997) A comparison of ocean tracer dating techniques on a meridional section in the eastern North Atlantic. Deep-Sea Res I 44(4):603–626Google Scholar
  23. Dutay J-C, Jean-Baptiste P, Campin J-M, Ishida A, Maier-Reimer E, Matear RJ, Mouchet A, Totterdell IJ, Yamanaka Y, Rodgers KB, Madec G, Orr JC (2004) Evaluation of OCMIP-2 ocean models’ deep circulation with mantle helium-3. J Mar Syst 48:15–36Google Scholar
  24. Emerson S, Quay P, Stump C, Wilbur D, Knox M (1991) O2, Ar, N2, and 222Rn in surface waters of the subarctic ocean: net biological O2 production. Global Biogeochem Cycles 5:49–69Google Scholar
  25. Emerson S, Stump C, Wilbur D, Quay P (1999) Accurate measurement of O-2, N-2, and Ar gases in water and the solubility of N-2. Mar Chem 64(4):337–347Google Scholar
  26. Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282(677–680): Google Scholar
  27. Fairhall AW (1970) Concerning the source of the excess 3He in the sea. Earth Planet Sci Lett 7(3):249–250Google Scholar
  28. Farley KA, Maier-Reimer E, Schlosser P, Broecker WS (1995) Constraints on mantle 3He fluxes and deep-sea circulation from a general circulation model. J Geophys Res 100(B3):3829–3839Google Scholar
  29. Fuchs G, Roether W, Schlosser P (1987) Excess 3He in the ocean surface layer. J Geophys Res 92:6559–6568Google Scholar
  30. Fuchsman CA, Murray JW, Konovalov SK (2008) Concentration and natural stable isotope profiles of nitrogen species in the Black Sea. Mar Chem 111(1–2):90–105. doi: 10.1016/j.marchem.2008.04.009CrossRefGoogle Scholar
  31. Garabato ACN, Stevens DP, Watson AJ, Roether W (2007) Short-circuiting of the overturning circulation in the Antarctic circumpolar current. Nature 447:194–197Google Scholar
  32. Gehrie E, Archer D, Emerson S, Stump C, Henning C (2006) Subsurface ocean argon disequilibrium reveals the equatorial Pacific shadow zone. Geophys Res Lett 33(18): Google Scholar
  33. Gow AJ, Williamson T (1975) Gas inclusions in antarctic ice sheet and their glaciological significance. J Geophys Res Oceans Atmos 80(36):5101–5108. doi: 10.1029/JC080i036p05101CrossRefGoogle Scholar
  34. Gruber N, Sarmiento JL (1997) Global patterns of marine nitrogen fixation and denitrification. Global Biogeochem Cycles 11(2):235–266Google Scholar
  35. Hamme RC, Cassar N, Lance VP, Vaillancourt RD, Bender ML, Strutton PG, Moore TS, DeGrandpre MD, Sabine CL, Ho DT, Hargreaves BR (2012) Dissolved O2/Ar and other methods reveal rapid changes in productivity during a Lagrangian experiment in the Southern Ocean. J Geophys Res-Oceans 117:C00F12 doi: 10.1029/2011JC007046Google Scholar
  36. Hamme RC, Emerson S (2004a) Measurement of dissolved neon by isotope dilution using a quadrupole mass spectrometer. Mar Chem 91(1–4):53–64Google Scholar
  37. Hamme RC, Emerson S (2004b) The solubility of neon, nitrogen and argon in distilled water and seawater. Deep Sea Res I 51(11):1517–1528Google Scholar
  38. Hamme RC, Emerson S (2006) Constraining bubble dynamics and mixing with dissolved gases: implications for productivity measurements by oxygen mass balance. J Mar Res 64(1):73–95Google Scholar
  39. Hamme RC, Severinghaus JP (2007) Trace gas disequilibria during deep-water formation. Deep-Sea Res Part I-Oceanogr Res Pap 54(6):939–950Google Scholar
  40. Harrison WG, Harris LR (1986) Isotope-dilution and its effects on measurements of nitrogen and phosphorus uptake by oceanic microplankton. Mar Ecol Prog Ser 27(3):253–261Google Scholar
  41. Hendricks MB, Bender ML, Barnett BA (2004) Net and gross O-2 production in the Southern Ocean from measurements of biological O-2 saturation and its triple isotope composition. Deep-Sea Res Part I-Oceanogr Res Pap 51(11):1541–1561Google Scholar
  42. Hendricks MB, Bender ML, Barnett BA, Strutton P, Chavez FP (2005) Triple oxygen isotope composition of dissolved O-2 in the equatorial Pacific: a tracer of mixing, production, and respiration. J Geophys Res-Oceans 110(C12):doi: 10.1029/2004JC002735
  43. Henning CC, Archer D, Fung I (2006) Argon as a tracer of cross-isopycnal mixing in the thermocline. J Phys Oceanogr 36(11):2090–2105Google Scholar
  44. Ho DT, Law CS, Smith MJ, Schlosser P, Harvey M, Hill P (2006) Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. Geophys Res Lett 33(16)Google Scholar
  45. Ho DT, Wanninkhof R, Schlosser P, Ullman DS, Hebert D, Sullivan KF (2011) Toward a universal relationship between wind speed and gas exchange: gas transfer velocities measured with (3)He/SF(6) during the Southern Ocean gas exchange experiment. J Geophys Res-Oceans 116 doi:C00f04 10.1029/2010jc006854
  46. Hohmann R, Schlosser P, Jacobs S, Ludin A, Weppernig R (2002) Excess helium and neon in the southeast Pacific: tracers for glacial meltwater. J Geophys Res-Oceans 107(C11):doi: 10.1029/2000JC000378
  47. Holland PR, Feltham DL, Jenkins A (2007) Ice shelf water plume flow beneath filchner-ronne ice shelf, Antarctica. J Geophys Res-Oceans 112(C5) doi:C05044 10.1029/2006jc003915
  48. Hood EM, Howes BL, Jenkins WJ (1998) Dissolved gas dynamics in perennially ice-covered Lake Fryxell, Antarctica. Limnol Oceanogr 43(2):265–272Google Scholar
  49. Howard E, Emerson S, Bushinsky S, Stump C (2010) The role of net community production in air-sea carbon fluxes at the North Pacific subarctic-subtropical boundary region. Limnol Oceanogr 55(6):2585–2596. doi: 10.4319/lo.2010.55.6.2585CrossRefGoogle Scholar
  50. Huang RX, Qiu B (1994) Three dimensional structure of the wind-driven circulation in the subtropical North Pacific. J Phys Oceanogr 24(7):1608–1622Google Scholar
  51. Huang RX, Qiu B (1998) The structure of the wind-driven circulation in the subtropical South Pacific Ocean. J Phys Oceanogr 28:1173–1186Google Scholar
  52. Huber C, Beyerle U, Leuenberger M, Schwander J, Kipfer R, Spahni R, Severinghaus JP, Weiler K (2006) Evidence for molecular size dependent gas fractionation in firn air derived from noble gases, oxygen, and nitrogen measurements. Earth Planet Sci Lett 243(1–2):61–73Google Scholar
  53. Ito T, Deutsch C (2006) Understanding the saturation state of argon in the thermocline: the role of air-sea gas exchange and diapycnal mixing. Global Biogeochem Cycles 20(3):doi: 10.1029/2005GB002655Google Scholar
  54. Ito T, Deutsch C, Emerson S, Hamme RC (2007) Impact of diapycnal mixing on the saturation state of argon in the subtropical North Pacific. Geophys Res Lett 34(9):doi: 10.1029/2006GL029209
  55. Ito T, Hamme RC, Emerson S (2011) Temporal and spatial variability of noble gas tracers in the North Pacific. J Geophys Res-Oceans 116 doi:C08039 10.1029/2010jc006828
  56. Jahne B, Heinz G, Dietrich W (1987) Measurement of the diffusion coefficients of sparingly soluble gases in water. J Geophys Res 92(C10):10767–10776Google Scholar
  57. Jenkins WJ (1977) Tritium-helium dating in the Sargasso Sea: a measurement of oxygen utilization rates. Science 196(4287):291–292Google Scholar
  58. Jenkins WJ (1980) Tritium and He-3 in the Sargasso Sea. J Mar Res 38(3):533–569Google Scholar
  59. Jenkins WJ (1987) 3H and 3He in the Beta Triangle: observations of gyre ventilation and oxygen utilization rates. J Phys Oceanogr 17:763–783Google Scholar
  60. Jenkins WJ (1988a) Nitrate flux into the euphotic zone near Bermuda. Nature 331(6156):521–523Google Scholar
  61. Jenkins WJ (1988b) The use of anthropogenic tritium and He-3 to study sub-tropical gyre ventilation and circulation. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 325(1583):43–61Google Scholar
  62. Jenkins WJ (1991) Determination of isopycnic diffusivity in the Sargasso Sea. J Phys Oceanogr 21(7):1058–1061Google Scholar
  63. Jenkins WJ (1996) Tritium and 3He in the WOCE Pacific program. Int WOCE Newslett 23:6–8Google Scholar
  64. Jenkins WJ (1998) Studying subtropical thermocline ventilation and circulation using tritium and He-3. J Geophys Res-Oceans 103(C8):15817–15831Google Scholar
  65. Jenkins WJ (2008) The biogeochemical consequences of changing ventilation in the Japan/East Sea. Mar Chem 108(3–4):137–147. doi: 10.1016/j.marchem.2007.11.003CrossRefGoogle Scholar
  66. Jenkins WJ, Beg MA, Clarke WB, Wangersky PJ, Craig H (1972) Excess 3He in the Atlantic Ocean. Earth Planet Sci Lett 16:122–130Google Scholar
  67. Jenkins WJ, Clarke WB (1976) The distribution of 3He in the western Atlantic Ocean. Deep Sea Res 23:481Google Scholar
  68. Jenkins WJ, Doney SC (2003) The subtropical nutrient spiral. Global Biogeochem Cycles 17(4):1110. doi: 10.1029/2003GB002085CrossRefGoogle Scholar
  69. Jenkins WJ, Edmond JM, Corliss JB (1978) Excess 3He and 4He in galapagos submarine hydrothermal waters. Nature 272:156Google Scholar
  70. Jenkins WJ, Rona PA, Edmond JM (1980) Excess 3He in the deep-water over the Mid-Atlantic Ridge at 26°N: evidence of hydrothermal activity. Earth Planet Sci Lett 50:39–44Google Scholar
  71. Jonsson BF, Doney SC, Dunne J, Bender M Evaluation of Southern Ocean O2/Ar based NCP measurements in a model framework. J Geophys Res-OceansGoogle Scholar
  72. Juranek LW, Quay PD (2005) In vitro and in situ gross primary and net community production in the North Pacific subtropical gyre using labeled and natural abundance isotopes of dissolved O-2. Global Biogeochem Cycles 19(3):doi: 10.1029/2004GB002384
  73. Kaiser J, Reuer MK, Barnett B, Bender ML (2005) Marine productivity estimates from continuous O-2/Ar ratio measurements by membrane inlet mass spectrometry. Geophys Res Lett 32(19):doi: 10.1029/2005GL023459Google Scholar
  74. Klein B, Roether W, Kress N, Manca BB, d’Alcala MR, Souvermezoglou E, Theocharis A, Civitarese G, Luchetta A (2003) Accelerated oxygen consumption in eastern Mediterranean deep waters following the recent changes in thermohaline circulation. J Geophys Res-Oceans 108(C9) doi:8107. 10.1029/2002jc001454
  75. Kurz MD, Jenkins WJ (1981) The distribution of helium in oceanic basalt glasses. Earth Planet Sci Lett 53:41–54Google Scholar
  76. Kurz MD, Jenkins WJ, Hart SR (1982) Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297(5861):43–47Google Scholar
  77. Kurz MD, Jenkins WJ, Hart SR, Clague D (1983) Helium isotopic variations in volcanic rocks from Loihi Seamount and the islands of Hawaii. Earth Planet Sci Lett 66:388–406Google Scholar
  78. Lomas MW, Lipschultz F, Nelson DM, Krause JW, Bates NR (2009) Biogeochemical responses to late-winter storms in the Sargasso Sea, I-pulses of primary and new production. Deep-Sea Res Part I Oceanogr Res Pap 56(6):843–860Google Scholar
  79. Loose B, Schlosser P, Smethie WM, Jacobs S (2009) An optimized estimate of glacial melt from the ross ice shelf using noble gases, stable isotopes, and CFC transient tracers. J Geophys Res-Oceans 114 doi:C08007. 10.1029/2008jc005048
  80. Lott DE (2001) Improvements in noble gas separation methodology: a nude cryogenic trap. Geochemistry, Geophysics, Geosystems 2:10.129/2001GC000202Google Scholar
  81. Lott DE, Jenkins WJ (1984) An automated cryogenic charcoal trap system for helium isotope mass spectrometry. Rev Sci Instrum 55(12):1982–1988Google Scholar
  82. Lott DE, Jenkins WJ (1998) Advances in analysis and shipboard processing of tritium and helium samples. Int WOCE Newslett 30:27–30Google Scholar
  83. Lupton JE, Baker ET, Massoth GJ (1989) Variable 3He/heat ratios in submarine hydrothermal systems: evidence from two plumes over the Juan de Fuca ridge. Nature 337:161–164Google Scholar
  84. Lupton JE, Craig H (1975) Excess He-3 in oceanic basalts: evidence for terrestrial primordial helium. Earth Planet Sci Lett 26(2):133–139Google Scholar
  85. Lupton JE, Craig H (1981) A major helium-3 source at 15S on the East Pacific rise. Science 214(4516):13–18Google Scholar
  86. Lupton JE, Klinkhammer G, Normark WR, Haymon R, MacDonald KC, Weiss RF, Craig H (1980) Helium-3 and manganese at the 21 N East Pacific rise hydrothermal site. Earth Planet Sci Lett 50:115–127Google Scholar
  87. Luyten JR, Pedlosky J, Stommel H (1983) The ventilated thermocline. J Phys Oceanogr 13:292–309Google Scholar
  88. MacMahon D (2006) Half-life evaluations for H-3, Sr-90, and Y-90. Appl Radiat Isot 64(10–11):1417–1419Google Scholar
  89. Mahaffey C, Williams RG, Wolff GA, Anderson WT (2004) Physical supply of nitrogen to phytoplankton in the Atlantic Ocean. Global Biogeochem Cycles 18(1): Google Scholar
  90. Manning CC, Hamme RC, Bourbonnais A (2010) Impact of deep-water renewal events on fixed nitrogen loss from seasonally-anoxic Saanich inlet. Mar Chem 122(1–4):1–10. doi: 10.1016/j.marchem.2010.08.002CrossRefGoogle Scholar
  91. Martinerie P, Raynaud D, Etheridge DM, Barnola JM, Mazaudier D (1992) Physical and climatic parameters which influence the air content in polar ice. Earth Planet Sci Lett 112(1–4):1–13. doi: 10.1016/0012-821x(92)90002-dCrossRefGoogle Scholar
  92. McDougall TJ (1990) Bulk properties of “hot smoker” plumes. Earth Planet Sci Lett 99:185–194Google Scholar
  93. McGillicuddy DJ, Anderson LA, Bates NR, Bibby T, Buesseler KO, Carlson CA, Davis CS, Ewart C, Falkowski PG, Goldthwait SA, Hansell DA, Jenkins WJ, Johnson R, Kosnyrev VK, Ledwell JR, Li QP, Siegel DA, Steinberg DK (2007) Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science 316(5827):1021–1026Google Scholar
  94. Morrison P, Pine J (1955) Radiogenic origin of helium isotopes in rock. Ann N Y Acad Sci 62(3):69–92Google Scholar
  95. Nicholson D, Emerson S, Caillon N, Jouzel J, Hamme RC (2010) Constraining ventilation during deepwater formation using deep ocean measurements of the dissolved gas ratios (40)Ar/(36)Ar, N(2)/Ar, and Kr/Ar. J Geophys Res Oceans 115 doi:C11015. 10.1029/2010jc006152
  96. Nightingale PD, Malin G, Law CS, Watson A, Liss PS, Liddicoat MI, Boutin J, Upstill-Goddard R (2000) In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem Cycles 14(1):373–387Google Scholar
  97. Peterson BJ (1980) Aquatic primary productivity and the C-14-Co2 method—a history of the productivity problem. Annu Rev Ecol Syst 11:359–385Google Scholar
  98. Postlethwaite CF (2002) Developing a tool for evaluating the role of seasonal sea ice in deepwater formation. University of SouthamptonGoogle Scholar
  99. Postlethwaite CF, Rohling EJ, Jenkins WJ, Walker CF (2005) A tracer study of ventilation in the Japan/East Sea. Deep Sea Res Part II 52(11–13):1684–1704Google Scholar
  100. Quay PD, Peacock C, Bjorkman K, Karl DM (2010) Measuring primary production rates in the ocean: enigmatic results between incubation and non-incubation methods at station ALOHA. Global Biogeochem Cycles 24(3):doi: 10.1029/2009GB003665Google Scholar
  101. Reuer MK, Barnett BA, Bender ML, Falkowski PG, Hendricks MB (2007) New estimates of Southern Ocean biological production rates from O-2/Ar ratios and the triple isotope composition of O-2. Deep-Sea Res Part I Oceanogr Res Pap 54(6):951–974Google Scholar
  102. Robbins PE, Jenkins WJ (1998) Observations of temporal changes of tritium-3He age in the eastern North Atlantic thermocline: evidence for changes in ventilation? J Mar Res 56:1125–1161Google Scholar
  103. Robbins PE, Price JF, Owens WB, Jenkins WJ (2000) The importance of lateral diffusion for the ventilation of the lower thermocline in the subtropical North Atlantic. J Phys Oceanogr 30(1):67–89. doi: 10.1175/1520-0485(2000)030<0067:tioldf>2.0.co;2CrossRefGoogle Scholar
  104. Rodehacke CB, Hellmer HH, Huhn O, Beckmann A (2007) Ocean/ice shelf interaction in the southern Weddell Sea: results of a regional numerical helium/neon simulation. Ocean Dyn 57(1):1–11Google Scholar
  105. Roether W, Well R, Putzka A, Ruth C (1998) Component separation of oceanic helium. J Geophys Res 103(C12):27931–27946Google Scholar
  106. Runham G (2001) Laboratory determination of the partitioning of He, Ne, and Ar between seawater and ice during freezing. University of SouthamptonGoogle Scholar
  107. Ruth C, Well R, Roether W (2000) Primordial 3He in South Atlantic deep waters from sources on the Mid-Atlantic ridge. Deep Sea Res I 47:1059–1075Google Scholar
  108. Sakai H, Tsubota H, Nakai T, Ishibashi J, Akagi T, Gamo T, Tilbrook B, Igarashi G, Kodera M, Shitashima K, Nakamura S, Fujioka K, Watanabe M, McMurtry G, Malahoff A, Ozima M (1987) Hydrothermal activity on the summit of Loihi Seamount. Geochem J 21:11–21Google Scholar
  109. Salter ME, Upstill-Goddard RC, Nightingale PD, Archer SD, Blomquist B, Ho DT, Huebert B, Schlosser P, Yang M (2011) Impact of an artificial surfactant release on air-sea gas fluxes during deep ocean gas exchange experiment II. J Geophys Res Oceans 116 doi:C11016 10.1029/2011jc007023
  110. Sano Y, Takahata N (2005) Measurement of noble gas solubility in seawater using a quadrupole mass spectrometer. J Oceanogr 61(3):465–473Google Scholar
  111. Scarratt MG, Marchetti A, Hale MS, Rivkin RB, Michaud S, Matthews P, Levasseur M, Sherry N, Merzouk A, Li WKW, Kiyosawa H (2006) Assessing microbial responses to iron enrichment in the subarctic Northeast Pacific: do microcosms reproduce the in situ condition? Deep Sea Res Part II 53(20–22):2182–2200Google Scholar
  112. Schlosser P (1986) Helium: a new tracer in Antarctic oceanography. Nature 321:233–235Google Scholar
  113. Schlosser P, Bayer R, Flodvik A, Fammelsrod T, Rhohardt G, Munnich KO (1990) Oxygen 18 and helium as tracers of ice shelf water and water/ice interaction in the Weddell Sea. J Geophys Res 95:3253–3263Google Scholar
  114. Severinghaus JP, Grachev A, Luz B, Caillon N (2003) A method for precise measurement of argon 40/36 and krypton/argon ratios in trapped air in polar ice with applications to past firn thickness and abrupt climate change in Greenland and at Siple Dome, Antarctica. Geochim Cosmochim Acta 67(3):325–343Google Scholar
  115. Smedsrud LH, Jenkins A (2004) Frazil ice formation in an ice shelf water plume. J Geophys Res Oceans 109(C3) doi:C03025  10.1029/2003jc001851
  116. Smith MJ, Ho DT, Law CS, McGregor J, Popinet S, Schlosser P (2011) Uncertainties in gas exchange parameterization during the SAGE dual-tracer experiment. Deep Sea Res Part Ii 58(6):869–881. doi: 10.1016/j.dsr2.2010.10.025CrossRefGoogle Scholar
  117. Smith SP, Kennedy BM (1983) The solubility of noble gases in water and NaCl brine. Geochim Cosmochim Acta 47(3):503–515. doi: 10.1016/0016-7037(83)90273-9CrossRefGoogle Scholar
  118. Speer KG (1989) The stommel and arons model and geothermal heating in the South Pacific. Earth Planet Sci Lett 95:359–366Google Scholar
  119. Speer KG, Rona PA (1989) A model of an Atlantic and Pacific hydrothermal plume. J Geophys Res 94:6213–6220Google Scholar
  120. Spitzer WS, Jenkins WJ (1989) Rates of vertical mixing, gas-exchange and new production—estimates from seasonal gas cycles in the upper ocean near Bermuda. J Mar Res 47(1):169–196Google Scholar
  121. Stanley RHR (2007) Air-sea gas exchange and upper ocean biological production. Ph.D thesis, MIT/WHOI Joint ProgramGoogle Scholar
  122. Stanley RHR, Baschek B, Lott DE, Jenkins WJ (2009a) A new automated method for measuring noble gases and their isotopic ratios in water samples. Geochem Geophys Geosyst 10:doi: 10.1029/2009GC002429Google Scholar
  123. Stanley RHR, Doney SC, Jenkins WJ, Lott III DE (2012) Apparent oxygen utilization rates calculated from tritium and helium-3 profiles at the Bermuda Atlantic time-series study site. Biogeosciences doi: 10.5194/bg-9-1969-2012:9977-10015
  124. Stanley RHR, Jenkins WJ, Doney SC (2006) Quantifying seasonal air-sea gas exchange processes using noble gas time-series: a design experiment. J Mar Res 64(2):267–295Google Scholar
  125. Stanley RHR, Jenkins WJ, Doney SC, Lott III DE (2009b) Noble gas constraints on air-sea gas exchange and bubble fluxes. J Geophys Res Oceans 114:doi: 10.1029/2009JC005396
  126. Stanley RHR, Kirkpatrick JB, Barnett B, Cassar N, Bender ML (2010) Net community production and gross production rates in the Western Equatorial Pacific. Global Biogeochem Cycles 24:GB4001, doi:40 10.1029/2009GB003651
  127. Steinberg DK, Carlson CA, Bates NR, Goldthwait SA, Madin LP, Michaels AF (2000) Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep Sea Res I 47:137–158Google Scholar
  128. Stommel H (1982) Is the South Pacific helium-3 plume dynamically active? Earth Planet Sci Lett 61:63–67Google Scholar
  129. Stommel H, Aarons AB (1960) On the abyssal circulation of the world ocean—II. An idealized model of the circulation pattern and amplitude in ocean basins. Deep Sea Res 6:217–233Google Scholar
  130. Stoney GJ (1905) Escape of gases from the atmosphere. Mon Weather Rev 7(January):6–9Google Scholar
  131. Tagliabue A, Bopp L, Dutay J-C, Bowie AR, Chever F, Jean-Baptiste P, Bucciarelli E, Lannuzel D, Remenyi T, Sarthou G, Aumont O, Gehlen M, Jeandel C (2010) Hydrothermal contribution to the oceanic dissolved iron inventory. Nat Geosci 3(4):252–256Google Scholar
  132. Takahashi T, Williams RT et al (1988) Alteration of the concentrations of dissolved gases in Niskin bottles during sampling operations. SAVE technical reportGoogle Scholar
  133. Takahata N, Sano Y, Horigucut K, ShiraO’ K, Ganio T (2008) Helium isotopes of seawater in the Japan Sea. J Oceanogr 64(2):293–301. doi: 10.1007/s10872-008-0023-3CrossRefGoogle Scholar
  134. Thorpe SA (1984) A model of the turbulent diffusion of bubbles below the sea surface. J Phys Oceanogr 14:841–854Google Scholar
  135. Tomczak M (1981) A multi-parameter extension of temperature/salinity diagram techniques for the analysis of non-isopycnal mixing. Prog Oceanogr 10:147–171Google Scholar
  136. Tortell PD (2005) Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometery. Limnol Oceanogr Methods 3:24–37Google Scholar
  137. Turekian KK (1959) The terrestrial economy of helium and argon. Geochim Cosmochim Acta 17:37–43Google Scholar
  138. Warner MJ, Bullister JL, Wisegarver DP, Gammon RH, Weiss RF (1996) Basin-wide distributions of chlorofluorocarbons CFC-11 and CFC-12 in the North Pacific: 1985–1989. J Geophys Res 101:20525–20542Google Scholar
  139. Watson AJ, Upstill-Goddard RC, Liss PS (1991) Air-sea gas exchange in rough and stormy seas measured by a dual-tracer technique. Nature 349:145–147Google Scholar
  140. Weiss RF (1968) Piggyback sampler for dissolved gas studies on sealed water samples. Deep Sea Res 15:841–854Google Scholar
  141. Weiss RF (1970) Helium isotope effect in solution in water and seawater. Science 168:247–248Google Scholar
  142. Weiss RF (1971) Solubility of helium and neon in water and seawater. J Chem Eng Data 16:235–241Google Scholar
  143. Weiss RF, Kyser TK (1978) Solubility of krypton in water and seawater. J Chem Eng Data 23(1):69–72Google Scholar
  144. Weiss WM, Roether W (1980) The rates of tritium input to the world oceans. Earth Planet Sci Lett 49:435–446Google Scholar
  145. Well R, Lupton JE, Roether W (2001) Crustal helium in deep Pacific waters. J Geophys Res 106(C7):14165–14177Google Scholar
  146. Well R, Roether W, Stevens DP (2003) An additional deep-water mass in drake passage as revealed by 3He data. Deep Sea Res I 50(9):1079–1098Google Scholar
  147. Weppernig R, Schlosser P, Khatiwala S, Fairbanks RG (1996) Isotope data from ice station Weddell: implications for deep water formation in the Weddell sea. J Geophys Res Oceans 101(C11):25723–25739. doi: 10.1029/96jc01895CrossRefGoogle Scholar
  148. Wijffels SE, Toole JM, Bryden HL, Fine RA, Jenkins WJ, Bullister JL (1996) The water masses and circulation at 10°N in the Pacific. Deep Sea Res I 43(4):501–544Google Scholar
  149. Wijffels SE, Toole JM, Davis RE (2001) Revisiting the South Pacific subtropical circulation: a synthesis of WOCE observations along 32 S. J Geophys Res 106(C9):19481–19513Google Scholar
  150. Williams RG, Follows MJ (1998) The Ekman transfer of nutrients and maintenance of new production over the North Atlantic. Deep Sea Res Part I Oceanogr Res Pap 45(2–3):461–489Google Scholar
  151. Wise DL, Houghton G (1966) Diffusion coefficients of 10 slightly soluble gases in water at 10–60°C. Chem Eng Sci 21(11):999–1010. doi: 10.1016/0009-2509(66)85096-0CrossRefGoogle Scholar
  152. Wood D, Caputi R (1966) Solubilities of Kr and Xe in fresh and sea water. In: U.S. Naval Radiological Defense Laboratory, San Francisco, p 14Google Scholar
  153. Young C, Lupton JE (1983) An ultra tight fluid sampling system using cold-welded copper tubing. Eos Transactions AGU 64:735Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations