Noble Gases in the Atmosphere

  • Yuji SanoEmail author
  • Bernard Marty
  • Pete Burnard
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)


The atmosphere is the primary terrestrial reservoir of the heavy noble gases (Ne, Ar, Kr, Xe) and precise knowledge of the isotopic composition of atmospheric noble gases is important for many—if not all—fields of noble gas geochemistry. Air noble gases, including helium, are very commonly used as a running laboratory standard for calibrating instrumental discrimination and sensitivity (see  Chap. 1), hence any potential temporal or spatial heterogeneities in the atmospheric noble gas composition could have consequences for the reliability and comparability of noble gas data. Metrological measurements such as the determination of Avogadro’s constant and the gas constant also depend on accurate determination of the isotopic composition (and isotopic masses) of atmospheric noble gases. However, absolute isotopic measurements are not straightforward and this section reviews both how absolute isotopic determinations have been made and assesses the temporal and spatial variability of the atmosphere at the present and in the recent (<2 Ka) past.


  1. Aldrich LT, Nier AO (1948) The occurence of He-3 in natural sources of helium. Phys Rev 74(11):1590–1594Google Scholar
  2. Aregbe Y, Mayer K, Valkiers S, DeBievre P (1996a) Release of anthropogenic xenon to the atmosphere: a large-scale isotope dilution. Int J Mass Spectrom Ion Processes 154(1–2):89–97Google Scholar
  3. Aregbe Y, Valkiers S, Mayer K, DeBievre P (1996b) Comparative isotopic measurements on xenon and krypton. Int J Mass Spectrom Ion Processes 153(1):L1–L5Google Scholar
  4. Aregbe Y, Mayer K, Valkiers S, DeBievre P (1997) Detection of reprocessing activities through stable isotope measurements of atmospheric noble gases. Fresenius J Anal Chem 358(4):533–535Google Scholar
  5. Aregbe Y, Valkiers S, Mayer K, De Bievre P, Wessel RM, Alink A (1998) Measuring amount ratios of gas isotopes by two primary methods. Metrologia 35(1):7–16Google Scholar
  6. Bender ML, Barnett B, Dreyfus G, Jouzel J, Porcelli D (2008) The contemporary degassing rate of Ar-40 from the solid Earth. Proc Nat Acad Sci USA 105(24):8232–8237Google Scholar
  7. Bianchi D, Sarmiento JL, Gnanadesikan A, Key RM, Schlosser P, Newton R (2010) Low helium flux from the mantle inferred from simulations of oceanic helium isotope data. Earth Planet Sci Lett 297(3–4):379–386Google Scholar
  8. Bottomley DJ, Ross JD, Clarke WB (1984) Helium and neon isotope geochemistry of some ground waters from the Canadian Precambrian shield. Geochim Cosmochim Acta 48(10):1973–1985Google Scholar
  9. Cadogan PH (1977) Paleoatmospheric argon in Rhynie Chert. Nature 268(5615):38–41Google Scholar
  10. Clarke WB, Jenkins WJ, Top Z (1976) Determination of tritium by mass-spectrometric measurement of He-3. Int J Appl Radiat Isot 27(9):515–522Google Scholar
  11. Coon JH (1949) He-3 isotopic abundance. Phys Rev 75(9):1355–1357Google Scholar
  12. Craig H, Clark WB, Beg MA (1975) Excess 3He in deep sea-water on the East Pacific rise. Earth Planet Sci Lett 26:125–132Google Scholar
  13. Davidson TA, DE Emerson (1990) Direct determination of the He-3 content of atmospheric air by mass-spectrometry. J Geophys Res [Atmos] 95(D4):3565–3569Google Scholar
  14. Eberhard P, Eugster O, Marti K (1965) A redetermination of isotopic composition of atmospheric neon. Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie A 20(4):623Google Scholar
  15. Gluckauf E (1946) A micro-analysis of the helium and neon contents of air. Proc R Soc Lond A Math Phys Sci 185(1000):98–119Google Scholar
  16. Gluckauf E, Paneth FA (1946) The helium content of atmospheric air. Proc R Soc Lond A Math Phys Sci 185(1000):89–98Google Scholar
  17. Graham DW (2002) Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts; characterization of mantle source reservoirs. Rev Mineral Geochem 47:247–317Google Scholar
  18. Hoffman JH, Nier AO (1993) Atmospheric helium isotopic ratio. Geophys Res Lett 20(2):121–123Google Scholar
  19. Holland PW, Emerson DE (1987) A determination of the He-4 content of near-surface atmospheric air within the continental United-States. J Geophy Res Solid Earth Planet 92(B12):12557–12566Google Scholar
  20. Izett GA, Obradovich JD (1994) AR-40/AR-39 age constraints for the jaramillo normal subchron and the matuyama-brunhes geomagnetic boundary. J Geophy Res Solid Earth 99(B2):2925–2934Google Scholar
  21. Jacob DJ (1999) Introduction to atmospheric chemistry. Princeton University Press, Princeton, p 266Google Scholar
  22. Johnson HE, Axford WI (1969) Production and loss of He-3 in Earths atmosphere. J Geophys Res 74(9):2433Google Scholar
  23. Kockarts G (1973) Helium in terrestrial atmosphere. Space Sci Rev 14(6):723–757Google Scholar
  24. Kockarts G, Nicolet M (1962) Le problem aeronomique de l’helium et de l’hydrogene neutres. Ann Geophys 18:269–290Google Scholar
  25. Laeter JRD, Böhlke JK, Bièvre PD, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements: review 2000 (IUPAC Technical Report). Pure Appl. Chem. 75(6):683–800Google Scholar
  26. Lee JY, Marti K, Severinghaus JP, Kawamura K, Yoo HS, Lee JB, Kim JS (2006) A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta 70(17):4507–4512Google Scholar
  27. Lupton JE (1983) Terrestrial inert-gases—isotope tracer studies and clues to primordial components in the mantle. Annu Rev Earth Planet Sci 11:371–414Google Scholar
  28. Lupton J, Evans L (2004) The atmospheric helium isotope ratio: is it changing? Geophys Res Lett 31(13): Google Scholar
  29. Lupton J, Graham D (1991) A ten-year decrease in the atmospheric helium isotope ratio possibly caused by human activity—comment. Geophys Res Lett 18(3):482–485Google Scholar
  30. Mamyrin BA, Tolstikhin I (1984) Helium isotopes in nature. Elsevier, Amsterdam, p 267Google Scholar
  31. Mamyrin BA, Anufriyev GS, Kamenskiy IL, Tolstikhin IN (1970) Determination of the isotopic composition of atmospheric helium. Geochem Int 7:498–505Google Scholar
  32. Mark DF, Stuart FM, de Podesta M (2011) New high-precision measurements of the isotopic composition of atmospheric argon. Geochim Cosmochim Acta 75(23):7494–7501Google Scholar
  33. Matsuda J, Matsumoto T, Sumino H, Nagao K, Yamamoto J, Miura Y, Kaneoka I, Takahata N, Sano Y (2002) The 3He/4He ratio of new internal He standard of Japan (HESJ). Geochem J 36(2):191–195Google Scholar
  34. Matsuda J-i, Matsumoto T, Suzuki A (2010) Helium in old porcelain: the historical variation of the He isotopic composition in air. Geochem J 44(6):E5–E9Google Scholar
  35. Moreira M, Kunz J, Allègre C (1998) Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279:1178–1181Google Scholar
  36. Muller JF, Brasseur G (1995) Images—a 3-dimensional chemical-transport model of the global troposphere. J Geophys Res [Atmos] 100(D8):16445–16490Google Scholar
  37. Nier AO (1950a) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys Rev 77(6):789–793Google Scholar
  38. Nier AO (1950b) A redetermination of the relative abundances of the isotopes of neon, krypton, rubidium, xenon, and mercury. Phys Rev 79(3):450–454Google Scholar
  39. Oliver BM, Bradley JG, Farrar H (1984) Helium concentration in the Earths lower atmosphere. Geochim Cosmochim Acta 48(9):1759–1767Google Scholar
  40. Ozima M, Podosek FA (1983) Noble gas geochemistry. Cambridge University Press, Cambridge, p 367Google Scholar
  41. Pavese F, Fellmuth B, Head DI, Hermier Y, Hill KD, Valkiers S (2005) Evidence of a systematic deviation of the isotopic composition of neon from commercial sources compared with its isotopic composition in air. Anal Chem 77(15):5076–5080Google Scholar
  42. Pierson-Wickmann AC, Marty B, Ploquin A (2001) Helium trapped in historical slags: a search for temporal variation of the He isotopic composition of air. Earth Planet Sci Lett 194(1–2):165–175Google Scholar
  43. Pinti DL, Marty B (1995) Noble gases in crude oils from the Paris Basin, France: implications for the origin of fluids and constraints on oil-water-gas interactions. Geochim Cosmochim Acta 59(16):3389–3404Google Scholar
  44. Pujol M, Marty B, Burnard P, Philippot P (2009) Xenon in Archean barite: Weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation. Geochimica Cosmochimica Acta 73:6834–6846Google Scholar
  45. Sano Y (1998) Time rate of atmospheric 3He/4He change: constraints from South Pacific deep seawater. J Sci Hiroshima Univ Ser C 11:113–118Google Scholar
  46. Sano Y, Wakita H, Xu S (1988) Atmospheric helium isotope ratio. Geochem J 22(4):177–181Google Scholar
  47. Sano Y, Wakita H, Makide Y, Tominaga T (1989) A ten-year decrease in the atmospheric helium isotope ratio possibly caused by human activity. Geophys Res Lett 16(12):1371–1374Google Scholar
  48. Sano Y, Wakita H, Makide Y, Tominaga T (1991) A ten-year decrease in the atmospheric helium isotope ratio possibly caused by human activity—reply. Geophys Res Lett 18(3):486–488Google Scholar
  49. Sano Y, Takahata N, Gamo T (1995) Helium isotopes in South Pacific deep seawater. Geochem J 29(6):377–384Google Scholar
  50. Sano Y, Takahata N, Igarashi G, Koizumi N, Sturchio NC (1998) Helium degassing related to the Kobe earthquake. Chem Geol 150(1–2):171–179Google Scholar
  51. Sano Y, Tokutake T, Takahata N (2008) Accurate measurement of atmospheric helium isotopes. Anal Sci 24(4):521–525Google Scholar
  52. Sano Y, Furukawa Y, Takahata N (2010) Atmospheric helium isotope ratio: possible temporal and spatial variations. Geochim Cosmochim Acta 74(17):4893–4901Google Scholar
  53. Swaine DJ, Goodarzi F (1997) Environmental aspects of trace elements in coal. Kluwer Academic Publishers, Dordrecht, p 312Google Scholar
  54. Turrin BD, Swisher CC, III, Deino AL (2010) Mass discrimination monitoring and intercalibration of dual collectors in noble gas mass spectrometer systems. Geochem Geophys Geosyst 11, Q0AA09. doi: 10.1029/2009GC003013 Google Scholar
  55. Tans PP, Conway TJ, Nakazawa T (1989) Latitudinal distribution of the sources and sinks of atmospheric carbon-dioxide derived from surface observations and an atmospheric transport model. J Geophys Res [Atmos] 94(D4):5151–5172Google Scholar
  56. Torgersen T (1989) Terrestrial helium degassing fluxes and the atmospheric helium budget; implications with respect to the degassing processes of continental crust. Chem Geol (Isot Geosci Sect) 79(1):1–14Google Scholar
  57. Valkiers S, Schaefer F, De Bievre P (1994) Near-absolute gas (isotope) mass spectrometry: isotope abundance (and atomic weight) determinations of neon, krypton, xenon and argon. Elsevier, Amsterdam, pp 965–968Google Scholar
  58. Valkiers S, Aregbe Y, Taylor PDP, De Bievre P (1998) A primary xenon isotopic gas standard with SI traceable values for isotopic composition and molar mass. Int J Mass Spectrom 173(1–2):55–63Google Scholar
  59. Valkiers S, Varlam M, Berglund M, Taylor P, Gonfiantini R, De Bievre P (2008) Absolute measurements of isotope amount ratios on gases part II. Application of the measurement models developed on real gases. Int J Mass Spectrom 269(1–2):71–77Google Scholar
  60. Weiss W, Stockburger H, Sartorius H, Rozanski K, Heras C, Ostlund HG (1986) Mesoscale transport of Kr-85 originating from European sources. Nucl Instrum Meth phys Res., Sect B 17(5–6):571–574Google Scholar
  61. Zartman RE, Wasserburg GJ, Reynolds al e JH (1961) Helium, argon and carbon in some natural gases. J Geophys Res 66:277–306Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Division of Ocean-Earth System Science, Atmosphere and Ocean Research InstituteThe University of TokyoChibaJapan
  2. 2.Centre de Recherches Pétrographiques et GéochimiquesVandoeuvre-lès-Nancy CedexFrance

Personalised recommendations