Noble Gases as Tracers of Mantle Processes and Magmatic Degassing

  • M. A. MoreiraEmail author
  • M. D. Kurz
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)


Noble gas geochemistry provides powerful tools for constraining mantle degassing through geological time. However, noble gas elemental and isotopic ratios are often disturbed by melting, magma degassing and atmospheric contamination. It is necessary to understand and quantify these shallow influences in order to obtain the noble gas elemental and isotopic ratios in the mantle. In this chapter, we present an overview of the key parameters that are necessary to derive mantle compositions. We discuss solubilities in silicate melts, crystal/melt partition coefficients during melting, and different models for vesiculation and degassing, along with the preferred method to correct for atmospheric contamination, using neon isotopic compositions. Using selected samples from mid-ocean ridge basalts (MORB) and ocean island basalts (OIB), we give the probable mantle contents and elemental and isotopic compositions of He, Ne, Ar and Xe in the depleted mantle and in the high 3He source. These estimates cannot be reconciled with ancient depletion models for unradiogenic noble gas isotopic compositions, found in some oceanic island basalts, which are best explained by relatively undegassed sources deep in the mantle.



We thank Pete Burnard for his patience and his thoughtful review of the manuscript. MK wishes to thank Institut de Physique du Globe de Paris for support while this manuscript was completed. This is IPGP contribution N°3337.


  1. Albarède F (2008) Rogue mantle helium and neon. Science 319:943–945Google Scholar
  2. Allard P, Jean-Baptiste P, D’Alessandro W, Parello F, Parisi B, Flehoc C (1997) Mantle-derived helium and carbon in groundwaters and gases of Mount Etna, Italy. Earth Planet Sci Lett 149:501–516Google Scholar
  3. Allègre CJ (1987) Isotope geodynamics. Earth Planet Sci Lett 86:175–203Google Scholar
  4. Allègre CJ, Moreira M, Staudacher T (1995) 4He/3He dispersion and mantle convection. Geophys Res Lett 22(17):2325–2328Google Scholar
  5. Anderson DL (1998) A model to explain the various paradoxes associated with mantle noble gas geochemistry. Proc Natl Acad Sci USA 95:9087–9092Google Scholar
  6. Aubaud C, Pineau F, Jambon A, Javoy M (2004) Kinetic disequilibrium of C, He, Ar and carbon isotopes during degassing of mid-ocean ridge basalts. Earth Planet Sci Lett 222:391–406Google Scholar
  7. Bach W, Niedermann S (1998) Atmospheric noble gases in volcanic glasses from the southern Lau basin: origin from the subducting slab? Earth Planet Sci Lett 160:298–309Google Scholar
  8. Ballentine CJ (1997) Resolving the mantle He/Ne and crustal 21Ne/22Ne in well gases. Earth Planet Sci Lett 152(1–4):233–250Google Scholar
  9. Ballentine C, Barfod D (2000) The origin of air-like noble gases in MORB and OIB. Earth Planet Sci Lett 180:39–48Google Scholar
  10. Bianchi D, Sarmiento JL, Gnanadesikan A, Key RM, Schlosser P, Newton R (2010) Low helium flux from the mantle inferred from simulations of oceanic helium isotope data. Earth Planet Sci Lett 297:379–386Google Scholar
  11. Black DC (1972) On the origins of trapped helium, neon and argon isotopic variations in meteorites—I. Gas-rich meteorites, lunar soil and breccia. Geochim Cosmochim Acta 36(3):347–375Google Scholar
  12. Broadhurst CL, Drake MJ, Hagee BE, Bernatowicz TJ (1990) Solubility and partitioning of Ar in anorthite, diopside, forsterite, spinel, and synthetic basaltic liquids. Geochim Cosmochim Acta 54:299–309Google Scholar
  13. Broadhurst CL, Drake MJ, Hagee BE, Bernatowicz TJ (1992) Solubility and partitioning of Ne, Ar, Kr, and Xe in minerals and synthetic basaltic melts. Geochim Cosmochim Acta 56:709–723Google Scholar
  14. Brooker RA, Zu Z, Blundy JD, Kelley SP, Allan NL, Wood BJ, Chamorro EM, Wartho JA, Purton JA (2003) The ‘Zero charge’ partitioning behaviour of noble gases during mantle melting. Nature 423:738–741Google Scholar
  15. Burnard P (1999a) The bubble-by-bubble volatile evolution of two mid-ocean ridge basalts. Earth Planet Sci Lett 174:199–211Google Scholar
  16. Burnard PG (1999b) Origin of argon-lead isotopic correlation in basalts. Science 286:871Google Scholar
  17. Burnard P (2004) Diffusive fractionation of noble gases and helium isotopes during mantle melting. Earth Planet Sci Lett 220(3–4):287–295Google Scholar
  18. Burnard PG, Farley KA (2000) Calibration of pressure-dependent sensitivity and discrimination in nier-type noble gas ion sources, G-cube, 2000GC000038Google Scholar
  19. Burnard PG, Stuart FM, Turner G, Oskarsson N (1994) Air contamination of basaltic magmas; implications for high 3 He/4He mantle Ar isotopic composition. J Geophys Res B, Solid Earth Planets, 99(9): 17, 709–717, 715Google Scholar
  20. Burnard P, Graham D, Turner G (1997) Vesicle-specific noble gas analyses of «popping rock»: implications for primordial noble gases in the earth. Science 276:568–571Google Scholar
  21. Burnard PG, Farley KA, Turner G (1998) Multiple fluid pulses in a Samoan harzburgite. Chem Geol 147(1–2):99–114Google Scholar
  22. Burnard P, Graham DW, Farley KA (2002) Mechanisms of magmatic gas loss along the southeast Indian ridge and the Amsterdam—St. Paul Plateau. Earth Planet Sci Lett 203:131–148Google Scholar
  23. Burnard P, Harrison D, Turner G, Nesbitt R (2003) Degassing and contamination of noble gases in mid-Atlantic ridge basalts. Geochem Geophys Geosyst 4Google Scholar
  24. Burnard P, Graham DW, Farley KA (2004) Fractionation of noble gases (He, Ar) during MORB mantle melting: a case study on the southeast Indian ridge. Earth Planet Sci Lett 227:457–472Google Scholar
  25. Cafee MW, Hudson GP, Velsko C, Huss GR, Alexander EC, Chivas R (1999) Primordial noble gases from earth’s mantle: identification of primitive volatile component. Science 285:2115–2118Google Scholar
  26. Carroll MR, Stolper E (1993) Noble gas solubilities in silica melts and glasses: new experimental results for argon and the relationship between solubility and ionic porosity. Geochem Cosmoch Acta 57:5039–5051Google Scholar
  27. Cartigny P, Pineau F, Aubaud C, Javoy M (2008) Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14° N and 34° N). Earth Planet Sci Lett 265:672–685Google Scholar
  28. Clarke WB, Beg MA, Craig H (1969) Excess 3He in the sea: evidence for terrestrial primordial helium. Earth Planet Sci Lett 6:213–220Google Scholar
  29. Clarke WB, Jenkins WJ, Top Z (1976) Determination of tritium by mass spectrometric measurement of 3He. Int J Appl Radiat Isot 27:512–522Google Scholar
  30. Class C, Goldstein S, Stute M, Kurz MD, Schlosser P (2005) Grand Comore island: a well-constrained “low 3He/4He” mantle plume. Earth Planet Sci Lett 233:391–409Google Scholar
  31. Coltice N, Ricard Y (1999) Geochemical observations and one layer mantle convection. Earth Planet Sci Lett 174:125–137Google Scholar
  32. Coltice N, Marty B, Yokochi R (2009) Xenon isotope constraints on the thermal evolution of the early earth. Chem Geol 266:4–9Google Scholar
  33. Coltice N, Moreira M, Labrosse S, Hernlund JW (2011) Crystallization of a basal magma ocean recorded by helium and neon. Earth Planet Sci Lett 308:193–199Google Scholar
  34. Craig H, Clarke WB, Beg MA (1975) Excess 3He in deep water on the east Pacific rise. Earth Planet Sci Lett 26:125–132Google Scholar
  35. Czuppon G, Matsumoto T, Handler MR, Matsuda J-I (2009) Noble gases in spinel peridotite xenoliths from Mt Quincan, North Queensland, Australia: undisturbed MORB-type noble gases in the subcontinental lithospheric mantle. Chem Geol 266:19–25Google Scholar
  36. Czuppon G, Matsumoto T, Matsuda J-I, Everard J, Sutherland L (2010) Noble gases in anhydrous mantle xenoliths from Tasmania in comparison with other localities from eastern Australia: implications for the tectonic evolution. Earth Planet Sci Lett 299:317–327Google Scholar
  37. Dixon E (2003) Interpretation of helium and neon isotopic heterogeneity in Icelandic basalts. Earth Planet Sci Lett 206:83–99Google Scholar
  38. Dixon E, Honda M, McDougall I, Campbell I, Sigurdsson I (2000) Preservation of near-solar isotopic ratios in Icelandic basalts. Earth Planet Sci Lett 180:309–324Google Scholar
  39. Dymond J, Hogan L (1973) Noble gas abundance patterns in deap sea basalts—primordial gases from the mantle. Earth Planet Sci Lett 20:131Google Scholar
  40. Farley KA, Craig H (1994) Atmospheric argon contamination of ocean island basalt olivine phenocrysts. Geochem Cosmoch Acta 58(11):2509–2517Google Scholar
  41. Farley KA, Poreda RJ (1993) Mantle neon and atmospheric contamination. Earth Planet Sci Lett 114:325–339Google Scholar
  42. Farley KA, Maier-Reimer E, Schlosser P, Broecker WS (1995) Constraints on mantle 3He fluxes and deep-sea circulation from an oceanic general circulation model. J Geophys Res 100:3829–3839Google Scholar
  43. Ferrario B (1996) Chemical pumping in vacuum technology. Vacuum 47:363–370Google Scholar
  44. Fischer T (1971) Incorporation of Ar in east Pacific basalts. Earth Planet Sci Lett 12:321–324Google Scholar
  45. Furi E, Hilton DR, Halldorsson SA, Barry P, Hahm D, Fischer T, Gronvold K (2010) Apparent decoupling of the He and Ne isotope systematics of the Icelandic mantle: the role of He depletion, melt mixing, degassing fractionation and air interaction. Geochem Cosmoch Acta 74:3307–3332Google Scholar
  46. Gautheron C, Cartigny P, Moreira M, Harris JW, Allègre CJ (2005) Evidence for a mantle component shown by rares gases, C and N-isotopes in polycrystalline diamonds from Orapa (Botswana). Earth Planet Sci Lett 240:559–572Google Scholar
  47. Geist D, Fornari D, Kurz MD, Harpp KS, Soule SA, Perfit MR, Koleszar AM (2006) Submarine Fernandina: magmatism at the leading edge of the Galapagos hot spot, G3, 7(12)Google Scholar
  48. Georgen JE, Kurz M, Dick HJB, Lin J (2003) low 3He/4He ratios in basalt glasses from the western southwest Indian ridge (10–24°E). Earth Planet Sci Lett 206:509–528Google Scholar
  49. Gilfillan S, Ballentine CJ, Holland G, Blagburn D, Lollar BS, Stevens S, Schoell M, Cassidy M (2008) The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochem Cosmoch Acta 72:1174–1198Google Scholar
  50. Gonnermann HM, Mukhopadhyay S (2007) Non-equilibrium degassing and a primordial source for helium in ocean-island volcanism. Nature 449:1037–1040Google Scholar
  51. Gonnermann HM, Mukhopadhyay S (2009) Preserving noble gases in a convecting mantle. Nature 459:560–564Google Scholar
  52. Graham DW, Humphris SE, Jenkins WJ, Kurz MD (1993) Helium isotope geochemistry of some volcanic rocks from Saint Helena. Earth Planet Sci Lett 110:121–131Google Scholar
  53. Graham DW, Lupton JE, Spera FJ, Christie DM (2001) Upper-mantle dynamics revealed by helium isotope variations long the southeast Indian ridge. Nature 409:701–703Google Scholar
  54. Grand SP, van der Hilst RD, Widiyantoro S (1997) Global seismic tomography; a snapshot of convection in the Earth. GSA Today 7(4):1–7Google Scholar
  55. Grimberg A, Baur H, Bochsler P, Buhler F, Burnett DS, Hays CC, Heber VS, Jurewicz AJG, Wieler R (2006) Solar wind neon from genesis: implications for the lunar noble gas record. Science 314:1133–1135Google Scholar
  56. Guillot B, Sarda P (2006) The effect of compression on noble gas solubility in silicate melts and consequences for degassing at mid-ocean ridges. Geochem Cosmoch Acta 70:1215–1230Google Scholar
  57. Hanyu T, Dunai T, Davies G, Kaneoka I, Nohda S, Uto K (2001) Noble gas study of the Reunion hotspot: evidence for distinct less-degassed mantle sources. Earth Planet Sci Lett 193:83–98Google Scholar
  58. Hanyu T, Tatsumi Y, Kimura J-I (2011) Constraints on the origin of the Himu reservoir from He-Ne-Ar isotope systematics. Earth Planet Sci Lett 307:377–386Google Scholar
  59. Harrisson D, Burnard P, Turner G (1999) Noble gas behaviour and composition in the mantle: constraints from the Iceland Plume. Earth Planet Sci Lett 171:199–207Google Scholar
  60. Harrisson D, Burnard P, Trieloff M, Turner G (2003) Resolving atmospheric contaminants in mantle noble gas analyses. Geochem Geophys Geosyst 4Google Scholar
  61. Heber VS, Brooker RA, Kelley SP, Wood BJ (2007) Crystal-melt partitioning of noble gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochim Cosmochim Acta 71:1041–1061Google Scholar
  62. Hennecke EW, Manuel OK (1975) Noble gases in CO2 well gas, Harding County, New Mexico. Earth Planet Sci Lett 27:346–355Google Scholar
  63. Hilton DR, Barling J, Wheller GE (1995) Effect of shallow-level contamination on the helium isotope systematics of ocean-island lavas. Nature 373:330–333Google Scholar
  64. Hilton DR, Grönvold K, Macpherson C, Castillo P (1999) Extreme 3He/4He ratios in northwest Iceland: constraining the common component in mantle plumes. Earth Planet Sci Lett 173:53–60Google Scholar
  65. Hiraga T, Hirschmann MM, Kohlstedt DL (2007) Equilibrium interface segregation in the diopside–forsterite system II: applications of interface enrichment to mantle geochemistry. Geochem Cosmoch Acta 71:1281–1289Google Scholar
  66. Hiyagon H, Ozima M (1986) Partition of gases between olivine and basalt melt. Geochim Cosmochim Acta 50:2045–2057Google Scholar
  67. Hiyagon H, Ozima M, Marty B, Zashu S, Sakai H (1992) Noble gases in submarine glasses from mid-oceanic ridges and Loihi seamount: constraints on the early history of the Earth. Geochim Cosmochim Acta 56:1301–13016Google Scholar
  68. Holland G, Ballentine CJ (2006) Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441:186–191Google Scholar
  69. Holland G, Cassidy M, Ballentine CJ (2009) Meteorite Kr in earth’s mantle suggests a late accretionary source for the atmosphere. Science 326:1522–1525Google Scholar
  70. Honda M, Patterson DB (1999) Systematic elemental fractionation of mantle-derived helium, neon, and argon in mid-oceanic ridge glasses. Geochim Cosmochim Acta 63:2863–2874Google Scholar
  71. Honda M, Woodhead JD (2005) A primordial solar-neon enriched component in the source of EM-I-type ocean island basalts from the pitcairn seamounts, Polynesia. Earth Planet Sci Lett 236:597–612Google Scholar
  72. Honda M, Reynolds JH, Roedder E, Epstein S (1987) Noble gases in diamonds: occurrences of solar like helium and neon. J Geophys Res 92(B12);12507–12521Google Scholar
  73. Honda M, McDougall I, Patterson DB, Doulgeris A, Clague D (1991) Possible solar noble-gas component in Hawaiian basalts. Nature 349:149–151Google Scholar
  74. Honda M, Patterson DB, McDougall I, Falloon (1993a) Noble gases in submarine pillow basalt glasses from the Lau Basin: detection of a solar component in backarc basin basalts. Earth Planet Sci Lett 120:135–148Google Scholar
  75. Honda M, McDougall I, Patterson DB, Doulgeris A, Clague D (1993b) Noble gases in submarine pillow basalt glasses from Loihi and Kilauea, Hawaii: a solar component in the earth. Geochim Cosmochim Acta 57:859–874Google Scholar
  76. Honda M, Phillips D, Harris JW, Yatsevich I (2004) Unusual noble gas composition in polycrystalline diamonds: preliminary results from the Jwaneng kimberlite, Botswana. Chem Geol 203:347–358Google Scholar
  77. Honda M, Phillips D, Harris JW, Matsumoto T (2011) He, Ne and Ar in peridotitic and eclogitic paragenesis diamonds from the Jwaneng kimberlite, Botswana—implications for mantle evolution and diamond formation ages. Earth Planet Sci Lett 301:43–51Google Scholar
  78. Hopp J, Trieloff M (2008) Helium deficit in high 3He/4He parent magmas: predegassing fractionation, not a “helium paradox”. G 3:9Google Scholar
  79. Hopp J, Trieloff M, Altherr R (2004) Neon isotopes in mantle rocks from the Red Sea region reveal large-scale plume-lithosphere interaction. Earth Planet Sci Lett 219:61–76Google Scholar
  80. Hopp J, Trieloff M, Buikin AI, Korochantseva EV, Scharz WH, Althaus T, Altherr R (2007) Heterogeneous mantle argon isotope composition in the subcontinental lithospheric mantle beneath the Red Sea region. Chem Geol 240:36–53Google Scholar
  81. Iacono-Marziano G, Paonita A, Rizzo A, Scaillet B, Gaillard F (2010) Noble gas solubilities in silicate melts: new experimental results and a comprehensive model of the effects of liquid composition, temperature and pressure. Chem Geol 279:145–157Google Scholar
  82. Jackson MG, Kurz MD, Hart SR (2009) Helium and neon isotopes in phenocrysts from Samoan lavas: evidence for heterogeneity in the terrestrial high 3He/4He mantle. Earth Planet Sci Lett 287(3–4):519–528Google Scholar
  83. Jambon A, Weber H, Braun O (1986) Solubility of He, Ne, Ar, Kr and Xe in a basalt melting in the range 1250–1600 °C. Geochemical implications. Geochim Cosmochim Acta 50:401–408Google Scholar
  84. Javoy M, Pineau F (1991) The volatiles record of a «popping» rock from the mid-Atlantic ridge at 14° N: chemical and isotopic composition of gas trapped in the vesicles. Earth Planet Sci Lett 107:598–611Google Scholar
  85. Jean-Baptiste P, Allard P, Coutinho R, Ferreira T, Fourre E, Queiroz G, Gaspar JL (2009) Helium isotopes in hydrothermal volcanic fluids of the Azores archipelago. Earth Planet Sci Lett 281:70–80Google Scholar
  86. Kaneoka I, Takaoka N (1977) Excess 129Xe and high 3He/4He ratios in olivine phenocrysts of Kapuho lava and xenolithic dunites from Hawaii. Rock Magn Paleogeophysics 4:139–143Google Scholar
  87. Kaneoka I, Takaoka N, Aoki K (1977) Rare gases in a phlogopite nodule and a phlogopite-bearing peridotite in South African kimberlites. Earth Planet Sci Lett 36(1):181–186Google Scholar
  88. Kaneoka I, Takaoka N, Upton BGJ (1986) Noble gas systematics in basalts and a dunite nodule from Réunion and Grand Comore Islands, Indian Ocean. Chem Geol 59:35–42Google Scholar
  89. Kunz J, Staudacher T, Allègre CJ (1998) Plutonium-fission xenon found in earth’s mantle. Science 280:877–880Google Scholar
  90. Kurz MD (1993) Mantle heterogeneity beneath oceanic islands: some inferences from isotopes. Philos Trans R Soc Lond A342:91–103Google Scholar
  91. Kurz MD, Jenkins WJ (1981) The distribution of helium in oceanic basalt glasses. Earth Planet Sci Lett 53:41–54Google Scholar
  92. Kurz MD, Jenkins WJ, Hart SR (1982a) Helium isotopic systematics of oceanic islands and mantle heterogeneity. Nature 297:43–47Google Scholar
  93. Kurz MD, Jenkins WJ, Schilling J-G, Hart SR (1982b) Helium isotopic variation in the mantle beneath the central North Atlantic Ocean. Earth Planet Sci Lett 58:1–14Google Scholar
  94. Kurz MD, Jenkins WJ, Hart SR, Clague D (1983) Helium isotopic variations in volcanic rocks from Loihi seamount and the island of Hawaii. Earth Planet Sci Lett 66:388–406Google Scholar
  95. Kurz MD,Gurney JJ (1987) Helium isotopic variability within single diamonds from the Orapa kimberlite pipe. Earth Planet Sci Lett 86:57–68Google Scholar
  96. Kurz MD, Curtice J, Lott DE III, Solow A (2004a) Rapid helium isotopic variability in Mauna Kea shield lavas from the Hawaian scientific drilling project. Geochem Geophys Geosyst 5(4): Google Scholar
  97. Kurz MD, Fornari D, Geist D, Curtice J, Lott D (2004) Helium and neon from the deep earth: submarine Galapagos glasses and global correlations. In: Goldschmidt conference, Copenhagen, 5–11 June 2004Google Scholar
  98. Kurz MD, Moreira M, Curtice J, Lott DE III, Mahoney JJ, Sinton JM (2005) Correlated helium, neon, and melt production on the super-fast spreading east Pacific rise near 17°S. Earth Planet Sci Lett 232:125–142Google Scholar
  99. Kurz MD, Warren JM, Curtice J (2009a) Mantle deformation and noble gases: helium and neon in oceanic mylonites. Chem Geol 266:10–18Google Scholar
  100. Kurz MD, Curtice J, Fornari D, Geist D, Moreira M (2009b) Primitive neon from the center of the Galapagos hotspot. Earth Planet Sci Lett 286:23–34Google Scholar
  101. Labrosse S, Hernlund JW, Coltice N (2007) A crystallizing dense magma ocean at the base of earth’s mantle. Nature (accepted)Google Scholar
  102. Lal D, Nishiizumi K, Klein J, Middleton R, Craig H (1987) Cosmogenic 10Be in zaire alluvial diamonds: Implications for 3He contents of diamonds, Nature 328:139–141Google Scholar
  103. Lott DEI (2001) Improvements in noble gas separation methodology: a nude cryogenic trap, G-cube, 2001GC000202Google Scholar
  104. Lott DE, Jenkins WJ (1984) An automated cryogenic charcoal trap system for helium isotope mass spectrometry. Rev Sci Inst 55:1982–1988Google Scholar
  105. Lupton JE, Craig H (1975) Excess 3He in oceanic basalts: evidence for terrestrial primordial helium. Earth Planet Sci Lett 26:133–139Google Scholar
  106. Lux G (1987) The behavior of noble gases in silicate liquids: solution, diffusion, bubbles and surface effects, with application to natural samples. Geochim Cosmochim Acta 51:1549–1560Google Scholar
  107. Macpherson CG, Hilton DR, Mertz DF, Dunai T (2005) Sourcesn degassing, and contamination of CO2, H2O, He, Ne and Ar in basaltic glasses from Kolbeinsey ridge, north Atlantic. Geochem Cosmoch Acta 69:5729–5746Google Scholar
  108. Madureira P, Moreira M, Mata J, Allègre CJ (2005) Primitive helium and neon isotopes in Terceira island (Azores archipelago). Earth Planet Sci Lett 233:429–440Google Scholar
  109. Mahoney JJ, Natland JH, White WM, Poreda R, Bloomer SH, Flsher RL, Baxter AN (1989) Isotopic and geochemical provinces of the western Indian Ocean spreading centers. J Geophys Res 94(B4):4033–4052 Google Scholar
  110. Mamyrin BZ, Tolsthikin IN, Anufriyev GS, Kamenskii IL (1969) Isotopic analysis of terrestrial helium on a magnetic resonance mass spectrometer. Geochem Int 6:517–524Google Scholar
  111. Marrocchi Y, Burnard P, Hamilton D, Colin A, Pujol M, Zimmermann L (2009) Neon isotopic measurements using high-resolution, multicollector noble gas mass spectrometer: HELIX-MC. Geochem Geophys Geosyst G3(10):1–8Google Scholar
  112. Marty B (1989) Neon and xenon isotopes in MORB: implications for the earth-atmosphere evolution. Earth Planet Sci Lett 94:45–56Google Scholar
  113. Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on earth. Earth Planet Sci Lett 313–314:56–66Google Scholar
  114. Marty B, Lussiez P (1993) Constraints on rare gas partition coefficients from analysis of olivine-glass from a picritic mid oceanic ridge basalt. Chem Geol 106:1–7Google Scholar
  115. Marty B, Ozima M (1986) Noble gas distribution in oceanic basalts glasses. Geochim Cosmochim Acta 50:1093–1097Google Scholar
  116. Marty B, Tolstikhin IN (1998) CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem Geol 145:233–248Google Scholar
  117. Marty B, Zimmermann L (1999) Volatiles (He, C, N, Ar) in mid ocean ridge basalts: assessment of shallow level fractionation and characterization of source composition. Geochem Cosmochem Acta 63:3619–3633Google Scholar
  118. Marty B, Zashu S, Ozima M (1983) Two noble gas components in a mid-Atlantic ridge basalt. Nature 302(5905):238–240Google Scholar
  119. Marty B, Trull T, Lussiez P, Basile I, Tanguy JC (1994) He, Ar, O, Sr and Nd isotope constraints on the origin and evolution of Mount Etna magmatism. Earth Planet Sci Lett 126:23–39Google Scholar
  120. Matsumoto T, Seta A, Matsuda JI, Takebe M, Chen Y, Arai S (2002) Helium in the archean komatiites revisited: significantly high 3He/4He ratios revealed by fractional crushing gas extraction. Earth Sci Rev 196:213–225Google Scholar
  121. Meibom A, Anderson DL, Sleep NH, Frei R, Page Chamberlain C, Hren MT, Wooden JL (2003) Are high 3He/4He ratios in oceanic basalts an indicator of deep-mantle plume components? Earth Planet Sci Lett 208:197–204Google Scholar
  122. Miyazaki A, Hiyagon H, Siugiura N, Hirose K, Takahashi E (2004) Solubilities of nitrogen and noble gases in silicate melts under various oxygen fugacities: implications for the origin and degassing history of nitrogen and noble gases in the earth. Geochem Cosmoch Acta 68:387–401Google Scholar
  123. Moreira M (2007) Constraints on the origin of the 129Xe on earth using the tellurium double beta decay. Earth Planet Sci Lett 264Google Scholar
  124. Moreira M, Allègre CJ (1998) Helium–neon systematics and the structure of the mantle. Chem Geol 147:53–59Google Scholar
  125. Moreira M, Allègre CJ (2002) Rare gas systematics on mid Atlantic ridge (37°–40°). Earth Planet Sci Lett 198:401–416Google Scholar
  126. Moreira M, Raquin A (2007) Noble gas subduction in the mantle: the “subduction barrier” revisited. C R Geosci 339:937–945Google Scholar
  127. Moreira M, Sarda P (2000) Noble gas constraints on degassing processes. Earth Planet Sci Lett 176:375–386Google Scholar
  128. Moreira M, Staudacher T, Sarda P, Schilling J-G, Allègre CJ (1995) A primitive plume neon component in MORB: the Shona ridge-anomaly, south Atlantic (51–52°S). Earth Planet Sci Lett 133:367–377Google Scholar
  129. Moreira M, Valbracht P, Staudacher T, Allègre CJ (1996) Rare gas systematics in Red Sea ridge basalts. Geophys Res Lett 23:2453–2456Google Scholar
  130. Moreira M, Kunz J, Allègre CJ (1998) Rare gas systematics on popping rock: estimates of isotopic and elemental compositions in the upper mantle. Science 279:1178–1181Google Scholar
  131. Moreira M, Doucelance R, Dupré B, Kurz M, Allègre CJ (1999) Helium and lead isotope geochemistry in the Azores archipelago. Earth Planet Sci Lett 169:189–205Google Scholar
  132. Moreira M, Breddam K, Curtice J, Kurz M (2001) Solar neon in the Icelandic mantle: evidence for an undegassed lower mantle. Earth Planet Sci Lett 185:15–23Google Scholar
  133. Mukhopadhyay S (2011) I-Pu-Xe in OIBs and the early separation of the plume source from the MORB source mantle. Mineral Mag 75Google Scholar
  134. Mukhopadhyay S (2012) Early differentiation and volatile accretion recorded in deep mantle neon and xenon. Nature. doi: 10.1038/nature11141CrossRefGoogle Scholar
  135. Niedermann S, Bach W (1998) Anomalously nucleogenic neon in North Chile ridge basalt glasses suggesting a previously degassed mantle source. Earth Planet Sci Lett 160:447–462Google Scholar
  136. Niedermann S, Bach W, Erzinger J (1997) Noble gas evidence for a lower mantle component in MORB from the southern east Pacific rise: decoupling of helium and neon isotope systematics. Geochim Cosmochim Acta 61:2697–2715Google Scholar
  137. Nier AO (1947) A mass spectrometer for isotope and gas analysis. Rev Sci Instrum 18:398–411Google Scholar
  138. Nishio Y, Ishii T, Gamo T, Sano Y (1999) Volatile element isotopic systematics of the rodrigues triple junction Indian Ocean MORB: implications for mantle heterogeneity. Earth Planet Sci Lett 170:241–253Google Scholar
  139. Ozima M, Zashu S (1983) Noble gases in submarine pillow-glasses. Earth Planet Sci Lett 62:24–40Google Scholar
  140. Ozima M, Zashu S (1988) Solar-type Ne in zaire cubic diamonds. Geochim Cosmochim Acta 52:19–25Google Scholar
  141. Ozima M, Zashu S (1991) Noble gas state of the ancient mantle as deduced from noble gases in coated diamonds. Earth Planet Sci Lett 105:13–27Google Scholar
  142. Ozima M, Podozek FA, Igarashi G (1985) Terrestrial xenon isotope constraints on the early history of the earth. Nature 315:471–474Google Scholar
  143. Paonita A, Martelli M (2006) Magma dynamics at mid-ocean ridges by noble gas kinetic fractionation: assessment of magmatic ascent rates. Earth Planet Sci Lett 241:138–158Google Scholar
  144. Paonita A, Martelli M (2007) A new view of the He–Ar–CO2 degassing at mid-ocean ridges: homogeneous composition of magmas from the upper mantle. Geochem Cosmoch Acta 71:1747–1763Google Scholar
  145. Parai R, Mukhopadhyay S, Lassiter JC (2009) New constraints on the HIMU mantle from neon and helium isotopic compositions of basalts from the Cook–Austral Islands. Earth Planet Sci Lett 277:253–261Google Scholar
  146. Parman SW, Kurz MD, Hart SR, Grove TL (2005) Helium solubility in olivine and implications for high 3He/4He in ocean island basalts. Nature 437:1140–1143Google Scholar
  147. Patterson DB, Honda M, McDougall I (1990) Atmospheric contamination: a possible source for heavy noble gases basalts from Loihi seamount, Hawaii. Geophys Res Lett 17:705–708Google Scholar
  148. Pedroni A, Hammerschmidt K, Friedrichsen H (1999) He, Ne, Ar, and C isotope systematics of geothermal emanations in the Lesser Antilles Islands arc. Geochem Cosmoch Acta 63:515–532Google Scholar
  149. Pineau F, Javoy M, Bottinga Y (1976) 13C/12C ratios of rocks and inclusions in popping rocks of the mid Atlantic ridge and their bearing on the problem of isotopic composition of deep-seated carbon. Earth Planet Sci Lett 29:413–421Google Scholar
  150. Pinti D (2001) Anomalous xenon in archean cherts from Pilbara Craton, Western Australia. Chem Geol 175:387–395Google Scholar
  151. Porcelli D, Halliday A (2001) The core as a possible source of mantle helium. Earth Planet Sci Lett 192:45–56Google Scholar
  152. Poreda RJ, Farley KA (1992) Rare gases in Samoan xenoliths. Earth Planet Sci Lett 113:129–144Google Scholar
  153. Poreda R, Radicati di Brozolo F (1984) Neon isotope variations in mid-Atlantic ridge basalts. Earth Planet Sci Lett 69:277–289Google Scholar
  154. Pujol M, Marty B, Burnard P, Philippot P (2009) Xenon in Archean barite: weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation. Geochem Cosmoch Acta 73:6834–6846Google Scholar
  155. Pujol M, Marty B, Burgess R (2011) Chondritic-like xenon trapped in Archean rocks: a possible signature of the ancient atmosphere. Earth Planet Sci Lett 308:298–306Google Scholar
  156. Raquin A, Moreira M (2009) Air 38Ar/36Ar in the mantle: implication on the nature of the parent bodies of the earth. Earth Planet Sci Lett 287:551–558Google Scholar
  157. Raquin A, Moreira M, Guillon F (2008) He, Ne and Ar systematics in single vesicles: mantle isotopic ratios and origin of the air component in basaltic glasses. Earth Planet Sci Lett 274:142–150Google Scholar
  158. Reynolds JH (1956) High sensitivity mass spectrometer for noble gas analysis. Rev Sci Instrum 27:928–934Google Scholar
  159. Reynolds JH, Jeffery PM, McCrory GA, Varga PM (1978) Improved charcoal trap for rare gas mass spectrometry. Rev Sci Instrum 49:547–548Google Scholar
  160. Richard D, Marty B, Chaussidon M, Arndt N (1996) Helium isotopic evidence for a lower mantle component in depleted archean komatiite. Science 273:93–95Google Scholar
  161. Ruzié L, Moreira M (2009) Magma degassing process during plinian eruptions. J Volcanol Geoth Res (submitted)Google Scholar
  162. Sarda P (2004) Surface noble gas recycling to the terrestrial mantle. Earth Planet Sci Lett 228:49–63Google Scholar
  163. Sarda P, Graham DW (1990) Mid-ocean ridge popping rocks: implications for degassing at ridge crests. Earth Planet Sci Lett 97:268–289Google Scholar
  164. Sarda P, Moreira M (2002) Vesiculation and vesicle loss in mid oceanic ridge basalt glasses: He, Ne, Ar elemental fractionation and pressure influence. Geochem Cosmoch Acta 66:1449–1458Google Scholar
  165. Sarda P, Staudacher T, Allègre CJ (1985) 40Ar/36Ar in MORB glasses: constraints on atmosphere and mantle evolution. Earth Planet Sci Lett 72:357–375Google Scholar
  166. Sarda P, Staudacher T, Allègre CJ (1988) Neon isotopes in submarine basalts. Earth Planet Sci Lett 91:73–88Google Scholar
  167. Sarda P, Moreira M, Staudacher T (1998) Argon-lead isotopic correlation in mid-Atlantic ridge basalts. Science 283:666–668Google Scholar
  168. Sarda P, Moreira M, Staudacher T, Schilling J-G, Allègre CJ (2000) Rare gas systematics on the southernmost mid-Atlantic ridge: constraints on the lower mantle and the dupal source. J Geophys Res 105:5973–5996Google Scholar
  169. Schiano P, Provost A, Clocchiatti R, Faure F (2007) Transcrystalline melt migration and earth’s mantle. Science 314:970–974Google Scholar
  170. Schmidt BC, Keppler H (2002) Experimental evidence for high noble gas solubilities in silicate melts under mantle pressures. Earth Planet Sci Lett 195:277–290Google Scholar
  171. Shaw AM, Hilton DR, Fisher TP, Walker JA, de Leew GAM (2006) Helium isotope variations in mineral separates from Costa Rica and Nicaragua: assessing crustal contributions, timescale variations and diffusion-related mechanisms. Chem Geol 230:124–139Google Scholar
  172. Shibata T, Takahashi E, Matsuda J-I (1998) Solubility of neon, argon, krypton, and xenon in binary and ternary silicate systems: a new view on noble gas solubility. Geochem Cosmoch Acta 62:1241–1253Google Scholar
  173. Staudacher T (1987) Upper mantle origin for Harding County well gases. Nature 325:605–607Google Scholar
  174. Staudacher T, Allègre CJ (1982) Terrestrial xenology. Earth Planet Sci Lett 60:389–406Google Scholar
  175. Staudacher T, Allègre CJ (1988) Recycling of oceanic crust and sediments: the noble gas subduction barrier. Earth Planet Sci Lett 89:173–183Google Scholar
  176. Staudacher T, Allègre CJ (1989) Noble gases in glass samples from Tahiti: Teahitia, Rocard and Mehetia. Earth Planet Sci Lett 93:210–222Google Scholar
  177. Staudacher T, Allègre CJ (1993) Age of the second caldera of Piton de la Fournaise volcano, Réunion Island, determined by cosmic ray produced 3He and 21Ne, Earth Planet Sci Lett (in the press)Google Scholar
  178. Staudacher T, Kurz MD, Allègre CJ (1986) New noble-gas data on glass samples from Loihi seamount and Hualalai and on dunite samples from Loihi and Reunion Island. Chem Geol 56:193–205Google Scholar
  179. Staudacher T, Sarda P, Richardson SH, Allègre CJ, Sagna I, Dmitriev LV (1989) Noble gases in basalt glasses from a mid-Atlantic ridge topographic high at 14°N: geodynamic consequences. Earth Planet Sci Lett 96:119–133Google Scholar
  180. Staudacher T, Sarda P, Allègre CJ (1990) Noble gas systematics of Réunion Island, Indian Ocean. Chem Geol 89:1–17Google Scholar
  181. Stout VL, Gibbons MD (1955) Gettering of gas by titanium. J Appl Phys 26(12):1488–1492Google Scholar
  182. Stroncik NA, Niedermann S, Haase K (2008) Plume–ridge interaction revisited: evidence for melt mixing from He, Ne and Ar isotope and abundance systematics. Earth Planet Sci Lett 268:424–432Google Scholar
  183. Stuart FM, Lass-Evans S, Fitton JG, Ellam RM (2003) High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424:57–59Google Scholar
  184. Tolstikhin I, Hofmann AW (2005) Early crust on top of the earth’s core. Phys Earth Planet Inter 148:109–130Google Scholar
  185. Tolstikhin IN, Kramers JD, Hofmann AW (2006) A chemical earth model with whole mantle convection: the importance of a core–mantle boundary layer (D″) and its early formation. Chem Geol 226:79–99Google Scholar
  186. Trieloff M, Kunz J (2005) Isotope systematics of noble gases in the earth’s mantle: possible sources of primordial isotopes and implications for mantle structure. Phys Earth Planet Inter 148:13–38Google Scholar
  187. Trieloff M, Kunz J, Clague DA, Harrison D, Allègre CJ (2000) The nature of pristine noble gases in mantle plumes. Science 288:1036–1038Google Scholar
  188. Trieloff M, Kunz J, Allègre CJ (2002) Noble gas systematics of the reunion mantle plume source and the origin of primordial noble gases in earth’s mantle. Earth Planet Sci Lett 200:297–313Google Scholar
  189. Trieloff M, Falter M, Jessberger EK (2003) The distribution of mantle and atmospheric argon in oceanic basalt glasses. Geochem Cosmoch Acta 67:1229–1245Google Scholar
  190. Valbracht PJ, Honda M, Matsumoto T, Matielli N, Mc Dougall I, Ragettli R, Weis D (1996) Helium, neon and argon isotope systematics in kerguelen ultramafic xenoliths implications for mantle source signature. Earth Planet Sci Lett 138:29–38Google Scholar
  191. van Soest MC, Hilton DR, Kreulen R (1998) Tracing crustal and slab contributions to arc magmatism in the Lesser Antilles island arc using helium and carbon relationships in geothermal fluids. Geochem Cosmoch Acta 62:3323–3335Google Scholar
  192. Wada N, Matsuda J-I (1998) A noble gas study of cubic diamonds from zaire: constraints on their mantle source, Geochem Cosmoch Acta 62:2335–2345 Google Scholar
  193. Watson EB, Thomas JB, Cherniak DJ (2007) 40Ar retention in the terrestrial planets. Nature 449:299–304Google Scholar
  194. Wieler R (2002) Noble gases in the solar system, in noble gases in geochemistry and cosmochemistry. Rev Mineral Geochem 47:21–70Google Scholar
  195. Xu S, Nakai S, Wakita H, Wang X (1995) Mantle-derived noble gases in natural gases from Songliao basin, China. Geochem Cosmoch Acta 59:4675–4683Google Scholar
  196. Yamamoto JB, Burnard PG (2005) Solubility controlled noble gas fractionation during magmatic degassing: implications for noble gas compositions of primary melts of OIB and MORB. Geochem Cosmoch Acta 69:727–734Google Scholar
  197. Yamamoto J, Hirano N, Abe N, Hanyu T (2009a) Noble gas isotopic compositions of mantle xenoliths from northwestern Pacific lithosphere. Chem Geol 268:313–323Google Scholar
  198. Yamamoto J, Nishimura K, Sugimoto T, Takemura K, Takahata N, Sano Y (2009b) Diffusive fractionation of noble gases in mantle with magma channels: origin of low He/Ar in mantle-derived rocks. Earth Planet Sci Lett 280:167–174Google Scholar
  199. Yokochi R, Marty B (2004) A determination of the neon isotopic composition of the deep mantle. Earth Planet Sci Lett 225:77–88Google Scholar
  200. Yokochi R, Marty B (2006) Geochemical constraints on mantle dynamics in the hadeen. Earth Planet Sci Lett 238:17–30Google Scholar
  201. Zashu S, Hiyagon H (1995) Degassing mechanisms of noble gases from carbonado diamonds. Geochim Cosmochim Acta 59:1321–1328Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Equipe de Géochimie et Cosmochimie, Institut de Physique du Globe de ParisParis CedexFrance
  2. 2.Department of Marine Chemistry and GeochemistryWoods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations