Noble Gases and Halogens in Fluid Inclusions: A Journey Through the Earth’s Crust

  • Mark A. KendrickEmail author
  • Pete Burnard
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)


Fluid inclusions provide the only means possible for sampling fluids from the Earth's deep-interior and ancient past. Noble gas isotope analysis can provide quantitative information about the sources of volatile components in fluid inclusions (e.g. atmosphere, crust and mantle), whereas halogens provide complementary information about the fluids, acquisition of salinity and/or the presence of (I-rich) organic components. The aims of this chapter are to: (1) review methods for analysis of noble gases in fluid inclusions, and halogen analysis by the ‘noble gas method’ (extended 40Ar–39Ar methodology); and (2) summarise case studies of noble gases and halogens in fluid inclusions. The case studies include hydrothermal fluids involved in ore genesis in a range of geological environments encompassing mid-ocean ridge vents, sedimentary basins, near-pluton magmatic environments and metamorphic settings, as well as fluid inclusions in eclogite facies high-grade terranes relevant to subduction recycling processes. In contrast to modern ground waters, the fluid inclusion data suggest that most crustal fluids source some (additional) atmospheric noble gases within the crust (from sediments and hydrous minerals formed during seawater-alteration), and that low salinity fluids can acquire significant Br, as well as I, from organic-rich (meta-)sediments. Fluid–rock interactions are an important control on the composition of deep-crustal fluids; however, the orders of magnitude variation in noble gas isotope compositions and halogen abundances mean that they can preserve information about fluid sources that is overprinted in other stable and radiogenic isotope systems.


  1. Abrajano TA, Sturchio NC, Bohlke JK, Lyon GL, Poreda RJ, Stevens CM (1988) Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or shallow origin? Chem Geol 71(1–3):211–222Google Scholar
  2. Abrajano TA, Sturchio NC, Kennedy BM, Lyon GL, Muehlenbachs K, Bohlke JK (1990) Geochemistry of reduced gas related to serpentinisation of the zambales Ophiolite, Phillippines. Appl Geochem 5(5–6):625–630Google Scholar
  3. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (2000) Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air. Nature 405(6790):1040–1044Google Scholar
  4. Amari S, Ozima M (1988) Extra-terrestrial noble gases in deep sea sediments. Geochim Cosmochim Acta 52(5):1087–1095Google Scholar
  5. Andrew AS, Heinrich CA, Wilkins RWT, Patterson DJ (1989) Sulfur isotope systematics of copper ore formation at Mount Isa. Australia Econ Geol 84:1614–1626Google Scholar
  6. Andrews JN, Giles IS, Kay RLF, Lee DJ, Osmond JK, Cowart JB, Fritz P, Barker JF, Gale J (1982) Radioelements, radiogenic helium and age relationships for groundwaters from the Granites at Stripa, Sweden. Geochim Cosmochim Acta 46(9):1533–1543Google Scholar
  7. Andrews JN, Hussain N, Youngman MJ (1989) Atmospheric and radiogenic gases in groundwaters from the Stripa granite. Geochim Cosmochim Acta 53(8):1831–1841Google Scholar
  8. Andrews JN, Kay RLF (1982) Natural production of tritium in permeable rocks. Nature 298(5872):361–363Google Scholar
  9. Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicaters of age and paleoclimate trends. J Hydrol 41:233Google Scholar
  10. Arnaud NO, Kelley SP (1995) Evidence for excess argon during high pressure metamorphism in the Dora Maira Massif (western Alps, Italy), using an ultra-violet laser ablation microprobe 40Ar–39Ar technique. Contrib Miner Petrol 121(1):1–11Google Scholar
  11. Bach W, Frueh-Green GL (2010) Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 6(3):173–178Google Scholar
  12. Baker ET, Lupton JE (1990) Changes in submarien Hydrothermal 3He/Heat ratios as an indicator of magmatic tectonic activity. Nature 346(6284):556–558Google Scholar
  13. Baker ET, Lupton JE, Resing JA, Baumberger T, Lilley MD, Walker SL, Rubin KH (2011) Unique event plumes from a 2008 eruption on the Northeast Lau Spreading Center. Geochem Geophys, Geosyst 12Google Scholar
  14. Baker T (2002) Emplacement depth and carbon dioxide-rich fluid inclusions in intrusion-related gold deposits. Econ Geol Bull Soc Econ Geol 97(5):1111–1117Google Scholar
  15. Ballentine CJ, Barfod DN (2000) The origin of air-like noble gases in MORB and OIB. Earth Planet Sci Lett 180(1–2):39–48Google Scholar
  16. Ballentine CJ, Burgess R, Marty B (2002) Tracing fluid origin, transport and interaction in the crust. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble Gases in Geochemistry and Cosmochemistry, vol 47. Geochemical Society/Mineralogical Society of America, pp 539–614Google Scholar
  17. Ballentine CJ, Burnard PG (2002) Production, release and transport of noble gases in the continental crust. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, vol 47. Geochemical society/Mineralogical Society of America, pp 481–538Google Scholar
  18. Ballentine CJ, Mazurek M, Gautschi A (1994) Thermal constraints on crustal rare gas release and migration: evidence from Alpine fluid inclusions. Geochim Cosmochim Acta 58:4333–4348Google Scholar
  19. Ballentine CJ, O’Nions RK, Oxburgh ER, Horvath F, Deak J (1991) Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin. Earth Planet Sci Lett 105(1–3):229–246Google Scholar
  20. Banks DA, Green R, Cliff RA, Yardley BWD (2000) Chlorine isotopes in fluid inclusions: determination of the origins of salinity in magmatic fluids. Geochim Cosmochim Acta 64:1785–1789Google Scholar
  21. Barton MD, Johnson DA (1996) Evaporitic-source model for igneous related Fe oxide (REE-Cu-Au-U) mineralization. Geology 24:259–262Google Scholar
  22. Bein A, Hovorka SD, Fisher RS, Roedder E (1991) Fluid Inclusions in Bedded Permian Halite, Palo Duro Basin, Texas: evidence for modification of seawater in evaporite Brine-pools and subsequent early diagenesis. J Sediment Petrol 61(1):1–14Google Scholar
  23. Berndt ME, Seyfried WE (1990) Boron, Bromine and other trace-elements as clues to the fate of chlorine in midocean ridge vent fluids. Geochimica et Cosmochimica Acta 54:2235–2245Google Scholar
  24. Biester H, Keppler F, Putschew A, Martinez-Cortizas A, Petri M (2004) Halogen retention, organohalogens, and the role of organic matter decomposition on halogen enrichment in two Chilean peat bogs. Environ Sci Technol 38(7):1984–1991Google Scholar
  25. Bodnar RJ (2003) Interpretation of data from aqueous-electrolyte fluid inclusions. In: Samson I, Anderson A, Marshall D (eds) Fluid inclusions analysis and interpretation, vol 32. Mineralogical Association of Canada, Vancouver, British Columbia, pp 81–101Google Scholar
  26. Bodnar RJ, Binns PR, Hall DL (1989) Synthetic fluid inclusions: VI. Quantitative evaluation of the decrepitation behaviour of fluid inclusions in quartz at one atmosphere confining pressure. J Metamorph Geol 7:229–242Google Scholar
  27. Böhlke JK, Irwin JJ (1992a) Brine histroy indicated by Argon, Krypton, Chlorine, Bromine and Iodine analyses of fluid inclusions from the Mississippi Valley Type Lead-Fluorite-Barite deposits at Hansonburg, New-Mexico. Earth Planet Sci Lett 110(1–4):51–66Google Scholar
  28. Böhlke JK, Irwin JJ (1992b) Laser microprobe analyses of noble gas isotopes and halogens in fluid inclusions: analyses of microstandards and synthetic inclusions in quartz. Geochim Cosmochim Acta 56:187–201Google Scholar
  29. Böhlke JK, Irwin JJ (1992c) Laserprobe analyses of Cl, Br, I, and K in fluid inclusions: implications for the sources of salinity in some ancient hydrothermal fluids. Geochim Cosmochim Acta 56:203–225Google Scholar
  30. Bosch A, Mazor E (1988) Natural-gas association with water and oil as depicted by atmospheric noble-gases: case studies from the southeastern Mediterranean coastal-plain. Earth Planet Sci Lett 87(3):338–346Google Scholar
  31. Boschmann W, Becker R, Lippolt HJ (1984) Eignungsprufung von Erzmineralien fur U + Th/He Datiering. Verlag-Chemie, 361–373Google Scholar
  32. Boundy TM, Hall CM, Li G, Essene EJ, Halliday AN (1997) Fine-scale isotopic heterogeneities and fluids in the deep crust: a 40Ar/39Ar laser ablation and TEM study of muscovites from a granulite-eclogite transition zone. Earth Planet Sci Lett 148(1–2):223–242Google Scholar
  33. Burgess R, Taylor RP, Fallick AE, Kelley SP (1992) 40Ar/39Ar laser microprobe study of fluids in different color zones of a hydrothermal scheelite crystal from the Dae-Hwa W Mine, South Korea. Chemi Geol 102(1–4):259–267Google Scholar
  34. Burnard P, Graham D, Turner G (1997) Vesicle-specific noble gas analyses of “popping rock” implications for primordial noble gases in the Earth. Science 276:568–571Google Scholar
  35. Burnard P, Harrison D (2005) Argon isotope constraints on modification of oxygen isotopes in Iceland Basalts by surficial processes. Chem Geol 216(1–2):143–156Google Scholar
  36. Burnard PG, Hu R, Turner G, Bi XW (1999) Mantle, crustal and atmospheric noble gases in Ailaoshan Gold deposits, Yunnan Province, China. Geochim Cosmochim Acta 63(10):1595–1604Google Scholar
  37. Burnard PG, Polya DA (2004) Importance of mantle derived fluids during granite associated hydrothermal circulation: He and Ar isotopes of ore minerals from Panasqueira. Geochim Cosmochim Acta 68(7):1607–1615Google Scholar
  38. Burnard PG, Stuart F, Turner G (1994) C–He–Ar variations within a dunite nodule as a function of fluid inclusion morphology. Earth Planet Sci Lett 128(3–4):243–258Google Scholar
  39. Butterfield AW, Turner G (1985) Ancient argon in cherts. Terra Cognita 5:201–202Google Scholar
  40. Cadogan PH (1977) Palaeoatmospheric argon in Rhynie chert. Nature 268:38Google Scholar
  41. Carpenter AB, Trout ML, Pickett EE (1974) Preliminary report on the origin and chemical evolution of lead- and zinc-rich oil field brines in central Mississippi. Econ Geol 69:1191–1206Google Scholar
  42. Castro MC, Hall CM, Patriarche D, Goblet P, Ellis BR (2007) A new noble gas paleoclimate record in Texas: basic assumptions revisited. Earth Planet Sci Lett 257(1–2):170–187Google Scholar
  43. Champion DC, Sheraton JW (1997) Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: implications for crustal growth processes. Precambr Res 83(1–3):109–132Google Scholar
  44. Chang J (2011) Table of Nuclides, KAERI (Korea Atomic Energy Research Institute). Available at: Retrieved Feb 2011
  45. Chi GX, Savard MM (1997) Sources of basinal and Mississippi Valley-type mineralizing brines: mixing of evaporated seawater and halite-dissolution brine. Chem Geol 143(3–4):121–125Google Scholar
  46. Cline JS, Bodnar RJ (1991) Can economic porphyry copper mineralization be generated by a typical Calc-Alkaline Melt? J Geophys Res Solid Earth and Planets 96(B5):8113–8126Google Scholar
  47. Collins AG, Bennett JH, Manuel OK (1971) Iodine and Algae in Sedimentary Rocks Associated with Iodine-Rich Brines Geol Soc Am Bull 82(9):2607Google Scholar
  48. Connors KA, Page RW (1995) Relationships between magmatism, metamorphism and deformation in the western Mount Isa Inlier, Australia. Precambr Res 71:131–153Google Scholar
  49. Crocetti CA, Holland HD (1989) Sulfur-lead isotope systematics and the composition of fluid inclusions in Galena from the Viburnum trend. Missouri Econ Geol 84:2196–2216Google Scholar
  50. Drescher J, Kirsten T, Schäfer K (1998) The rare gas inventory of the continental crust, recovered by the KTB Continental Deep Drilling Project. Earth Planet Sci Lett 154(1–4):247–263Google Scholar
  51. Drever JI (1997) The geochemistry of natural waters: surface and groundwater environments, vol. Prentice-Hall Inc, Upper Saddle River, New JerseyGoogle Scholar
  52. Duncan RJ, Stein HJ, Evans KA, Hitzman MW, Nelson EP, Kirwin DJ (2011) A new geochronological framework for mineralization and alteration in the Selwyn-Mount Dore Corridor, Eastern Fold Belt, Mount Isa Inlier, Australia: genetic implications for iron oxide copper–gold deposits. Econ Geol 106(2):169–192Google Scholar
  53. Elmer FL, White RW, Powell R (2006) Devolatilization of metabasic rocks during greenschist-amphibolite facies metamorphism. J Metamorph Geol 24(6):497–513Google Scholar
  54. Ernst WG (1971) Metamorphic Zonations on Presumably Subducted Lithospheric Plates from Japan, California and Alps. Contributions to Mineralogy and Petrology 34(1):43Google Scholar
  55. Etminan H, Hoffmann CF (1989) Biomarkers in fluid inclusions: a new tool in constraining source regimes and its implications for the genesis of Mississippi Valley-type deposits. Geology 17(1):19–22Google Scholar
  56. Eugster O, Niedermann S, Thalmann C, Frei R, Kramers J, Krahenbuhl U, Liu YZ, Hofmann B, Boer RH, Reimold WU, Bruno L (1995) Noble gases, K, U, Th, and Pb in native gold. J Geophys Res-Solid Earth 100(B12):24677–24689Google Scholar
  57. Fairmaid AM, Kendrick MA, Phillips D, Fu B (2011) The origin and evolution of mineralizing fluids in a sediment-hosted orogenic-gold deposit, Ballarat East. Southeastern Australia. Econ Geol 106(4):653–666Google Scholar
  58. Fehn U, Lu Z, Tomaru H (2006) 129I/I ratios and halogen concentrations in pore water of Hydrate Ridge and their relevence for the origin of gas hydrates: a progress report. In: Trehu AM, Bohrmann G, Torres ME, Colwell FS (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol 204. pp 1–25Google Scholar
  59. Fehn U, Moran JE, Snyder GT, Muramatsu Y (2007) The initial 129I/I ratio and the presence of ′old′ iodine in continental margins. Nucl Instrum Methods Phys Res Sect B 259(1):496–502Google Scholar
  60. Fehn U, Snyder G, Egeberg PK (2000) Dating of pore waters with I-129: Relevance for the origin of marine gas hydrates. Science 289(5488):2332–2335Google Scholar
  61. Fehn U, Snyder GT, Matsumoto R, Muramatsu Y, Tomaru H (2003) Iodine dating of pore waters associated with gas hydrates in the Nankai area. Japan Geology 31(6):521–524Google Scholar
  62. Ferguson J, Etminan H, Ghassemi F (1993) Geochemistry of deep formation waters in the canning Basin, Western Australia and their relationship to Zn-Pb mineralisation. Aust J Earth Sci 40(5):471–483Google Scholar
  63. Fisher L, Kendrick MA (2008) Metamorphic fluid origins in the Osborne Fe oxide–Cu–Au deposit, Australia: evidence from noble gases and halogens. Miner Deposita 43:483–497Google Scholar
  64. Fontes JC, Andrews JN, Walgenwitz F (1991) Evaluation de la production naturelle in situ d’argon-36 via le chlore-36; implications geochimiques et geochronologiques; Evaluation of natural in situ production of argon-36 via chlorine-36; geochemical and geochronological implications. Comptes Rendus de l’Academie des Sciences, Serie 2, Mecanique, Physique, Chimie, Sciences de l’Univers, Sciences de la Terre 313(6):649–654Google Scholar
  65. Fontes JC, Matray JM (1993) Geochemistry and origin of formation brines from the Paris Basin, France 1. Brines associated with Triassic salts. Chem Geol 109:149–175Google Scholar
  66. Foster DRW, Rubenach MJ (2006) Isograd pattern and regional low pressure, high-temperature metamorphism of pelitic, mafic and calc-silicate rocks along an east-west section through the Mt Isa Inlier. Aust J Earth Sci 53:167–186Google Scholar
  67. Fu B, Kendrick MA, Fairmaid AM, Phillips D, Wilson CJL, Mernagh TP (2012) New constraints on fluid sources in orogenic gold deposits, Victoria, Australia. Contrib Miner Petrol 163:427–447Google Scholar
  68. Fu B, Touret JLR, Zheng YF (2001) Fluid inclusions in coesite-bearing eclogites and jadeite quartzite at Shuanghe, Dabie Shan (China). J Metamorph Geol 19(5):531–547Google Scholar
  69. Fu B, Zheng Y-F, Touret JLR (2002) Petrological, isotopic and fluid inclusion studies of eclogites from Sujiahe, NW Dabie Shan (China). Chem Geol 187(1–2):107–128Google Scholar
  70. Fuge R, Johnson CC (1986) The geochemistry of iodine: a review. Environ Geochem Health 8:31–54Google Scholar
  71. Garven G, Raffensperger JP (1997) Hydrology and geochemistry of ore genesis in sedimentary basins. In: Barnes HL (ed) The Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 125–190Google Scholar
  72. Gilfillan SMV, Ballentine CJ, Holland G, Blagburn D, Lollar BS, Stevens S, Schoell M, Cassidy M (2008) The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochim Cosmochim Acta 72(4):1174–1198Google Scholar
  73. Gilfillan SMV, Lollar BS, Holland G, Blagburn D, Stevens S, Schoell M, Cassidy M, Ding Z, Zhou Z, Lacrampe-Couloume G, Ballentine CJ (2009) Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature 458(7238):614–618Google Scholar
  74. Giorgis D, Cosca M, Li S (2000) Distribution and significance of extraneous argon in UHP eclogite (Sulu terrain, China): insight from in situ 40Ar/39Ar UV-laser ablation analysis. Earth Planet Sci Lett 181(4):605–615Google Scholar
  75. Gize AP, Barnes HL (1987) The organic geochemistry of two mississippi valley-type lead-zinc deposits. Econ Geol 82(2):457–470Google Scholar
  76. Goldfarb RJ, Groves DI, Gardoll S (2001) Orogenic gold and geologic time: a global synthesis. Ore Geol Rev 18(1–2):1–75Google Scholar
  77. Graham DW (2002) Noble gas isotope geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: characterisation of mantle source reservoirs. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble Gases in Geochemistry and Cosmochemistry, vol 47. pp 245–317Google Scholar
  78. Graupner T, Niedermann S, Kempe U, Klemd R, Bechtel A (2006) Origin of ore fluids in the Muruntau gold system: constraints from noble gas, carbon isotope and halogen data. Geochim Cosmochim Acta 70(21):5356–5370Google Scholar
  79. Graupner T, Niedermann S, Rhede D, Kempe U, Seltmann R, Williams CT, Klemd R (2010) Multiple sources for mineralizing fluids in the Charmitan gold (-tungsten) mineralization (Uzbekistan). Miner Deposita 45(7):667–682Google Scholar
  80. Gregory M, Schaefer B, Keays R, Wilde A (2008) Rhenium–osmium systematics of the Mount Isa copper orebody and the Eastern Creek Volcanics, Queensland, Australia: implications for ore genesis. Miner Deposita 43(5):553–573Google Scholar
  81. Groves DI, Goldfarb RJ, Robert F, Hart CJR (2003) Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Econ Geol Bull Soc Econ Geol 98(1):1–29Google Scholar
  82. Hanor JS (1994) Origin of saline fluids in sedimentary basins. In: Parnell J (ed) Geofluids: origin, migration and evolution of fluids in Sedimentary Basins, vol 78. Geological Society Special Publication, pp 151–174Google Scholar
  83. Heinrich CA, Andrew AS, Wilkins WT, Patterson DJ (1989) A fluid inclusion and stable isotope study of synmetamorphic copper ore formation at Mount Isa. Australia Econ Geol 84:529–550Google Scholar
  84. Heinrich CA, Bain JHC, Fardy JJ, Waring CL (1993) Br/Cl geochemistry of hydrothermal brines associated with Proterozoic metasediment-hosted copper mineralisation at Mount Isa, northern Australia. Geochim Cosmochim Acta 57:2991–3000Google Scholar
  85. Heinrich CA (2003) Fluid-fluid interactions in magmatic-hydrothermal ore formation. In: Liebscher A, Heinrich CA (eds) Fluid-fluid interactions, vol 65. Mineralogical Society of America, Geochem Soc, pp 363–387Google Scholar
  86. Hermann AG (1980) Bromide distribution between halite and NaCl-saturated seawater. Chem Geol 28:171–177Google Scholar
  87. Heyl AV, Landis GP, Zartman RE (1974) Isotopic evidence for the origin of Mississippi Valley-Type mineral deposits: a review. Econ Geol 69(6):992–1006Google Scholar
  88. Hitchon B (2006) Lead and zinc in formation waters, Alberta Basin, Canada: Their relation to the Pine Point ore fluid. Appl Geochem 21(1):109–133Google Scholar
  89. Hiyagon H (1989) Neon isotope measurement in the presence of Helium. Mass Spectrometry 37:325–330Google Scholar
  90. Ho SE, Groves D, McNaughton NJ, Mikucki EJ (1992) The source of ore fluids and solutes in Archaean lode-gold deposits of Western Australia. J Volcanol Geoth Res 50:173–196Google Scholar
  91. Holland G, Ballentine CJ (2006) Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441(7090):186–191Google Scholar
  92. Holser WT (1979) Trace elements and isotopes in evaporites. In: Burns RG (ed) Marine minerals: Mineralogical Society of America Short Course Notes, vol 6. pp 295–346Google Scholar
  93. Honda M, Kurita K, Hamano Y, Ozima M (1982) Experimental studies of He and Ar degassing during rock fracturing. Earth Planet Sci Lett 59(2):429–436Google Scholar
  94. Hu R-Z, Burnard PG, Bi X-W, Zhou M-F, Peng J-T, Su W-C, Zhao J-H (2009) Mantle-derived gaseous components in ore-forming fluids of the Xiangshan uranium deposit, Jiangxi province, China: Evidence from He, Ar and C isotopes. Chem Geol 266(1–2):86–95Google Scholar
  95. Hu RZ, Burnard PG, Bi XW, Zhou MF, Pen JT, Su WC, Wu KX (2004) Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China. Chem Geol 203(3–4):305–317Google Scholar
  96. Hu RZ, Burnard PG, Turner G, Bi XW (1998) Helium and Argon isotope systematics in fluid inclusions of Machangqing copper deposit in west Yunnan province, China. Chem Geol 146(1–2):55–63Google Scholar
  97. Hünemohr H (1989) Edelgase in U- and Th-reichen mineralen und die Bestimmung der 21Ne-dicktarget-ausbeute der 18O(alpha, n)21Ne Kernreaktion in Bereich 4.0-8.8 MeV. In, vol Ph.D. Johannes-Gutenberg University, MainzGoogle Scholar
  98. Irwin JJ, Reynolds JH (1995) Multiple stages of fluid trapping in the Stripa granite indicated by laser microprobe analysis of Cl, Br, I, K, U, and nucleogenic plus radiogenic Ar, Kr, and Xe in fluid inclusions. Geochim Cosmochim Acta 59(2):355–369Google Scholar
  99. Irwin JJ, Roedder E (1995) Diverse origins of fluid inclusions at Bingham (Utah, USA), Butte (Montana, USA), St. Austell (Cornwall, UK) and Ascension Island (mid-Atlantic, UK), indicated by laser microprobe analysis of Cl, K, Br, I, Ba + Te, U, Ar, Kr, and Xe. Geochim Cosmochim Acta 59(2):295–312Google Scholar
  100. Jambon A, Deruelle B, Dreibus G, Pineau F (1995) Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle. Chem Geol 126:101–117Google Scholar
  101. Jean-Baptiste P, Fouquet Y (1996) Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13°N. Geochim Cosmochim Acta 60(1):87–93Google Scholar
  102. Johnson L, Burgess R, Turner G, Milledge JH, Harris JW (2000) Noble gas and halogen geochemistry of mantle fluids: comparison of African and Canadian diamonds. Geochim Cosmochim Acta 64:717–732Google Scholar
  103. Kelley S (2002) Excess argon in K-Ar and Ar-Ar geochronology. Chem Geol 188(1–2):1–22Google Scholar
  104. Kelley S, Turner G, Butterfield AW, Shepherd TJ (1986) The source and significance of argon isotopes in fluid inclusions from areas of mineralization. Earth Plan Sci Lett 79:303–318Google Scholar
  105. Kendrick MA (2007) Comment on ‘Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: New insights from 40Ar/39Ar dating by stepwise crushing by Hua-Ning Qiu and JR Wijbrans’. Geochim Cosmochim Acta 71(24):6040–6045Google Scholar
  106. Kendrick MA (2012) High precision Cl, Br and I determination in mineral standards using the noble gas method. Chem Geol 292–293:116–126Google Scholar
  107. Kendrick MA, Baker T, Fu B, Phillips D, Williams PJ (2008a) Noble gas and halogen constraints on regionally extensive mid-crustal Na-Ca metasomatism, the Proterozoic Eastern Mount Isa Block, Australia. Precambr Res 163(1–2):131–150Google Scholar
  108. Kendrick MA, Burgess R, Harrison D, Bjørlykke A (2005) Noble gas and halogen evidence on the origin of Scandinavian sandstone-hosted Pb-Zn deposits. Geochim Cosmochim Acta 69:109–129Google Scholar
  109. Kendrick MA, Burgess R, Leach D, Pattrick RAD (2002a) Hydrothermal fluid origins in Mississippi valley-type ore deposits: combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the Illinois-Kentucky Fluorspar district, Viburnum Trend, and Tri-State districts, mid-continent United States. Econ Geol 97(3):452–479Google Scholar
  110. Kendrick MA, Burgess R, Pattrick RAD, Turner G (2001a) Fluid inclusion noble gas and halogen evidence on the origin of Cu-Porphyry mineralising fluids. Geochim Cosmochim Acta 65(16):2651–2668Google Scholar
  111. Kendrick MA, Burgess R, Pattrick RAD, Turner G (2001b) Halogen and Ar-Ar age determinations of inclusions within quartz veins from porphyry copper deposits using complementary noble gas extraction techniques. Chem Geol 177(3–4):351–370Google Scholar
  112. Kendrick MA, Burgess R, Pattrick RAD, Turner G (2002b) Hydrothermal fluid origins in a fluorite-rich Mississippi valley-type deposit: combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the South Pennine Orefield, United Kingdom. Econ Geol 97(3):435–451Google Scholar
  113. Kendrick MA, Duncan R, Phillips D (2006a) Noble gas and halogen constraints on mineralizing fluids of metamorphic versus surficial origin: Mt Isa, Australia. Chem Geol 235(3–4):325–351Google Scholar
  114. Kendrick MA, Honda M, Gillen D, Baker T, Phillips D (2008b) New constraints on regional brecciation in the Wernecke Mountains, Canada, from He, Ne, Ar, Kr, Xe, Cl, Br and I in fluid inclusions. Chem Geol 255(1–2):33–46Google Scholar
  115. Kendrick MA, Honda M, Oliver NHS, Phillips D (2011a) The noble gas systematics of late-orogenic H2O-CO2 fluids, Mt Isa, Australia. Geochim Cosmochim Acta 75(6):1428–1450Google Scholar
  116. Kendrick MA, Honda M, Walshe J, Petersen K (2011b) Fluid sources and the role of abiogenic-CH4 in Archean gold mineralization: constraints from noble gases and halogens. Precambr Res 189:313–327Google Scholar
  117. Kendrick MA, Kamenetsky VS, Phillips D, Honda M (2012) Halogen (Cl, Br, I) systemtics of mid-ocean ridge basalts: a Macquarie Island case study. Geochim Cosmochim Acta 81:82–93Google Scholar
  118. Kendrick MA, Mark G, Phillips D (2007) Mid-crustal fluid mixing in a Proterozoic Fe oxide-Cu-Au deposit, Ernest Henry, Australia: Evidence from Ar, Kr, Xe, Cl, Br, and I. Earth Planet Sci Lett 256(3–4):328–343Google Scholar
  119. Kendrick MA, Miller JM, Phillips D (2006b) Part II: Evaluation of 40Ar-39Ar quartz ages: Implications for fluid inclusion retentivity and determination of initial 40Ar/36Ar values in Proterozoic samples. Geochim Cosmochim Acta 70:2562–2576Google Scholar
  120. Kendrick MA, Phillips D (2009) New constraints on the release of noble gases during in vacuo crushing and application to scapolite Br-Cl-I and 40Ar/39Ar age determinations. Geochim Cosmochim Acta 73(19):5673–5692Google Scholar
  121. Kendrick MA, Phillips D, Miller JM (2006c) Part I. Decrepitation and degassing behaviour of quartz up to 1560 °C: Analysis of noble gases and halogens in complex fluid inclusions assemblages. Geochim Cosmochim Acta 70:2540–2561Google Scholar
  122. Kendrick MA, Phillips D, Wallace M, Miller JM (2011c) Halogens and noble gases in sedimentary formation waters and Zn-Pb deposits: a case study from the Lennard Shelf, Australia. Appl Geochem 26:2089–2100Google Scholar
  123. Kendrick MA, Scambelluri M, Honda M, Phillips D (2011d) High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat Geosci 4:807–812Google Scholar
  124. Kennedy BM (1988) Noble gases in vent water from the Juan de Fuca Ridge. Geochim Cosmochim Acta 52(7):1929–1935Google Scholar
  125. Kennedy BM, Hiyagon H, Reynolds JH (1990) Neon: a striking crustal uniformity. Earth Planet Sci Lett 98:277–286Google Scholar
  126. Kennedy BM, Torgersen T, van Soest MC (2002) Multiple atmospheric noble gas components in hydrocarbon reservoirs: a study of the Northwest Shelf, Delaware Basin, SE New Mexico. Geochim Cosmochim Acta 66(16):2807–2822Google Scholar
  127. Kesler SE (2007) Geochemistry of fluid inclusion brines from Earth’s oldest Mississippi Valley-type (MVT) deposits, Transvaal Supergroup, South Africa. Chem Geol 237:274–288Google Scholar
  128. Kesler SE, Appold MS, Martini AM, Walter LM, Huston TJ, Kyle JR (1995) Na-Cl-Br systematics of mineralising brines in Mississippi Valley-type deposits. Geology 23:641–644Google Scholar
  129. Kharaka YK, Hanor JS (2003) Deep Fluids in the Continents: I. Sedimentary Basins. In: Treatise on Geochemistry, vol. Pergamon, Oxford, pp 1–48Google Scholar
  130. Kharaka YK, Specht DJ (1988) The solubility of noble gases in crude oil at 25–100 °C. Appl Geochem 3(2):137–144Google Scholar
  131. Kipfer R, Aeschbach-Hertig W, Peeters F, Stute M (2002) Noble Gases in Lakes and Ground Waters. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble Gases in Geochemistry and Cosmochemistry, vol 47. The Mineralogical Society of America, pp 615–700Google Scholar
  132. Kluge T, Marx T, Scholz D, Niggemann S, Mangini A, Aeschbach-Hertig W (2008) A new tool for palaeoclimate reconstruction: Noble gas temperatures from fluid inclusions in speleothems. Earth Planet Sci Lett 269(3–4):408–415Google Scholar
  133. Lang JR, Baker T (2001) Intrusion-related gold systems: the present level of understanding. Miner Deposita 36(6):477–489Google Scholar
  134. Langmuir CH, Vocke RD Jr, Hanson GN, Hart SR (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37(3):380–392Google Scholar
  135. Large RR, Bull SW, Maslennikov VV (2011) A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits. Econ Geol 106(3):331–358Google Scholar
  136. Leach DL, Dwight B, Lewchuk MT, Symons DTA, de Marsily G, Brannon J (2001) Mississippi Valley-type lead-zinc deposits through geological time: implications from recent age-dating research. Miner Deposita 36(8):711–740Google Scholar
  137. Leach DL, Rowan EL (1986) Genetic link between Ouachita Foldbelt Tectonism and the Mississippi Valley-type lead-zinc deposits of the Ozarks. Geology 14(11):931–935Google Scholar
  138. Lee JY, Marti K, Severinghaus JP, Kawamura K, Yoo HS, Lee JB, Kim JS (2006) A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta 70(17):4507–4512Google Scholar
  139. Li XF, Wang CZ, Hua RM, Wei XL (2010) Fluid origin and structural enhancement during mineralization of the Jinshan orogenic gold deposit, South China. Miner Deposita 45(6):583–597Google Scholar
  140. Liebscher A, Luders V, Heinrich W, Schettler G (2006) Br/Cl signature of hydrothermal fluids: liquid-vapour fractionation of bromine revisited. Geofluids 6:113–121Google Scholar
  141. Lippmann-Pipke J, Sherwood Lollar B, Niedermann S, Stroncik NA, Naumann R, van Heerden E, Onstott TC (2011) Neon identifies two billion year old fluid component in Kaapvaal Craton. Chem Geol 283(3–4):287–296Google Scholar
  142. Lippmann J, Stute M, Torgersen T, Moser DP, Hall JA, Lin L, Borcsik M, Bellamy RES, Onstott TC (2003) Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa. Geochim Cosmochim Acta 67(23):4597–4619Google Scholar
  143. Lueders V, Niedermann S (2010) Helium isotope composition of fluid inclusions hosted in massive sulfides from modern submarine hydrothermal systems. Econ Geol 105(2):443–449Google Scholar
  144. Lupton JE, Baker ET, Massoth GJ (1989) Variable 3He/heat ratios in submarine hydrothermal systems: evidence from two plumes over the Juan de Fuca ridge. Nature 337(6203):161–164Google Scholar
  145. Lupton JE, Baker ET, Massoth GJ (1999) Helium, heat, and the generation of hydrothermal event plumes at mid-ocean ridges. Earth Planet Sci Lett 171(3):343–350Google Scholar
  146. MacCready T, Goleby BR, Goncharov A, Drummond BJ, Lister GS (1998) A framework of overprinting orogens based on interpretation of the Mt Isa deep siesmic transect. Econ Geol 93:1422–1434Google Scholar
  147. Mamyrin BA, Anufriyev GS, Kamenskiy IL, Tolstikhin (1970) Determination of the composition of atmospheric helium. Geochemistry International 7:498–505Google Scholar
  148. Mao JW, Li YQ, Goldfarb R, He Y, Zaw K (2003) Fluid inclusion and noble gas studies of the Dongping gold deposit, Hebei Province, China: a mantle connection for mineralization? Econ Geol Bull Soc Econ Geol 98(3):517–534Google Scholar
  149. Mark G (2001) Nd isotope and petrogenetic constraints for the origin of the Mount Angelay igneous complex: implications for the origin of intrusions in the Cloncurry district, NE Australia. Precambr Res 105:17–35Google Scholar
  150. Mark G, Foster DRW, Pollard PJ, Williams PJ, Tolman J, Darvall M, Blake KL (2004) Stable isotope evidence for magmatic fluid input during large-scale Na-Ca alteration in the Cloncurry Fe oxide Cu-Au district, NW Queensland, Australia. Terra Nova 16:54–61Google Scholar
  151. Mark G, Oliver NHS, Carew MJ (2006) Insights into the genesis and diversity of epigenetic Cu-Au mineralisation in the Cloncurry district, Mt Isa Inlier, northwest Queensland. Aust J Earth Sci 53:109–124Google Scholar
  152. Markl G, Bucher K (1998) Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks. Nature 391(6669):781–783Google Scholar
  153. Martin JB, Gieskes JM, Torres M, Kastner M (1993) Bromine and iodine in Peru margin sediments and pore fluids: Implications for fluid origins. Geochim Cosmochim Acta 57(18):4377–4389Google Scholar
  154. Matsuda J, Nagao K (1986) Noble-Gas abundances in a Deep-Sea sediment core from Eastern Equatorial Pacific. Geochem J 20(2):71–80Google Scholar
  155. Mavrogenes JA, Bodnar RJ (1994) Hydrogen movement into and out of fluid inclusions in quartz: experimental evidence and geologic implications. Geochim Cosmochim Acta 58(1):141–148Google Scholar
  156. McCaffrey MA, Lazar B, Holland HD (1986) The evaporation path of seawater and the composition of Br- and K+ with halite. J Sediment Petrol 57:928–937Google Scholar
  157. McDougall I, Harrison TM (1999) Geochronology and Thermochronology by the 40Ar/39Ar method, vol Oxford. University Press, New YorkGoogle Scholar
  158. McLaren S, Sandiford M, Hand M (1999) High radiogenic heat-producing granites and metamorphism: an example from the western Mount Isa inlier, Australia. Geology 27(8):679–682Google Scholar
  159. Mernagh T, Bastrakov EN, Zaw K, Wygralak AS, Wyborn LAI (2007) Comparison of fluid inclusion data and mineralisation processes for Australian orogenic gold and intrusion related gold systems. Acta Petrol Sin 23:21–32Google Scholar
  160. Moreira M, Blusztajn J, Curtice J, Hart S, Dick H, Kurz MD (2003) He and Ne isotopes in oceanic crust: implications for noble gas recycling in the mantle. Earth Planet Sci Lett 216(4):635–643Google Scholar
  161. Morelli R, Creaser RA, Seltmann R, Stuart FM, Selby D, Graupner T (2007) Age and source constraints for the giant Muruntau gold deposit, Uzbekistan, from coupled Re-Os-He isotopes in arsenopyrite. Geology 35(9):795–798Google Scholar
  162. Muramatsu Y, Doi T, Tomaru H, Fehn U, Takeuchi R, Matsumoto R (2007) Halogen concentrations in pore waters and sediments of the Nankai Trough, Japan: Implications for the origin of gas hydrates. Appl Geochem 22(3):534–556Google Scholar
  163. Muramatsu Y, Fehn U, Yoshida S (2001) Recycling of iodine in fore-arc areas: evidence from the iodine brines in Chiba, Japan. Earth Planet Sci Lett 192(4):583–593Google Scholar
  164. Muramatsu Y, Wedepohl KH (1998) The distribution of iodine in the Earth’s crust. Chem Geol 147(3–4):201–216Google Scholar
  165. Nahnybida T, Gleeson SA, Rusk BG, Wassenaar LI (2009) Cl/Br ratios and stable chlorine isotope analysis of magmatic-hydrothermal fluid inclusions from Butte, Montana and Bingham Canyon, Utah. Miner Deposita 44(8):837–848Google Scholar
  166. Neumayr P, Walshe J, Hagemann S, Petersen K, Roache A, Frikken P, Horn L, Halley S (2008) Oxidized and reduced mineral assemblages in greenstone belt rocks of the St. Ives gold camp, Western Australia: vectors to high-grade ore bodies in Archaean gold deposits? Miner Deposita 43(3):363–371Google Scholar
  167. Nissenbaum A (1977) Minor and trace elements in Dead sea water. Chem Geol 19:99–111Google Scholar
  168. Niedermann S (2002) Cosmic-Ray-Produced noble gases in terrestrial rocks: dating tools for surface processes. In: Porcelli CJ, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, vol 47: Reviews in Mineralogy and Geochemistry: Washington DC, Mineralogical Society of America, p 731–777Google Scholar
  169. Nier AO (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Phys Rev 77:789–793Google Scholar
  170. O’Nions RK, Oxburgh ER (1988) Helium, volatile fluxes and the development of continental crust. Earth Planet Sci Lett 90:331–347Google Scholar
  171. Oliver NHS (1995) Hydrothermal history of the Mary Kathleen fold belt, Mt Isa Block, Queensland. Aust J Earth Sci 42:267–279Google Scholar
  172. Oliver NHS, Butera KM, Rubenach MJ, Marshall LJ, Cleverley JS, Mark G, Tullemans F, Esser D (2008) The protracted hydrothermal evolution of the Mount Isa Eastern succession: a review and tectonic implications. Precambr Res 163(1–2):108–130Google Scholar
  173. Oliver NHS, Cartwright I, Wall VJ, Golding SD (1993) The stable isotope signature of kilometre-scale fracture-dominated metamorphic fluid pathways, Mary Kathleen, Australia. J Metamorph Geol 11:705–720Google Scholar
  174. Oliver NHS, Cleverley JS, Mark G, Pollard PJ, Fu B, Marshall LJ, Rubenach MJ, Williams PJ, Baker T (2004) Modeling the role of sodic alteration in the genesis of iron-oxide-copper-gold deposits, eastern Mt Isa block. Aust Econ Geol 99:1145–1176Google Scholar
  175. Osawa T (2004) A new correction technique for mass interferneces by 40Ar++ and CO2++ during isotope analysis of a small amount of Ne. J Mass Spectrom Soc Jpn 52(4):230–232Google Scholar
  176. Oxburgh ER, O’Nions RK, Hill RI (1986) Helium isotopes in sedimentary basins. Nature 324(6098):632–635Google Scholar
  177. Ozima M, Podosek FA (2002) Noble Gas Geochemistry, vol. Cambridge University PressGoogle Scholar
  178. Page RW, Sun S-S (1998) Aspects of geochronology and crustal evolution in the Eastern Fold Belt, Mount Isa Inlier. Aust J Earth Sci 45:343–362Google Scholar
  179. Painter MGM, Golding SD, Hannan KW, Neudert MK (1999) Sedimentologic, petrographic, and sulfur isotope constraints on fine-grained pyrite formation at Mount Isa Mine and environs, Northwest Queensland. Aust Econ Geol 94(6):883–912Google Scholar
  180. Perkins C, Heinrich CA, Wyborn LAI (1999) 40Ar/39Ar geochronology of copper mineralisation and regional alteration, Mount Isa. Aust Econ Geol 94:23–36Google Scholar
  181. Perkins WG (1984) Mount Isa Silica Dolomite and Copper Orebodies: the result of a syntectonic hydrothermal alteration system. Econ Geol 79(4):601–637Google Scholar
  182. Pettke T, Diamond LW (1997) Oligocene gold quartz veins at Brusson, NW Alps: Sr isotopes trace the source of ore-bearing fluid to over a 10 km depth. Econ Geol Bull Soc Econ Geol 92(4):389–406Google Scholar
  183. Pettke T, Frei R (1996) Isotope systematics in vein gold from Brusson, Val d’Ayas (NW Italy).1. Pb/Pb evidence for a Piemonte metaophiolite Au source. Chem Geol 127(1–3):111–124Google Scholar
  184. Pettke T, Frei R, Kramers JD, Villa IM (1997) Isotope systematics in vein gold from Brusson, Val d’Ayas (NW Italy).2. (U + Th)/He and K/Ar in native Au and its fluid inclusions. Chem Geol 135(3–4):173–187Google Scholar
  185. Phillips D, Fu B, Wilson CJL, Kendrick MA, Fairmaid AM, Miller JM (2012) Timing of Gold Mineralisation in the Western Lachlan Orogen, SE Australia: A Critical Overview. Aust J Earth Sci (in press)Google Scholar
  186. Phillips D, Miller JM (2006) 40Ar/39Ar dating of mica-bearing pyrite from thermally overprinted Archaean gold deposits. Geology 34:397–400Google Scholar
  187. Phillips FM, Castro MC (2003) Groundwater dating and residence-time measurements. In: Treatise on Geochemistry, vol 5. Elsevier, pp 451–497Google Scholar
  188. Phillips GN, Powell R (1993) Link between gold provinces. Econ Geol Bull Soc Econ Geol 88(5):1084–1098Google Scholar
  189. Pili É, Kennedy BM, Conrad ME, Gratier JP (2011) Isotopic evidence for the infiltration of mantle and metamorphic CO2-H2O fluids from below in faulted rocks from the San Andreas Fault system. Chem Geol 281(3–4):242–252Google Scholar
  190. Pinti DL, Béland-Otis C, Tremblay A, Castro MC, Hall CM, Marcil J-S, Lavoie J-Y, Lapointe R (2011) Fossil brines preserved in the St-Lawrence Lowlands, Québec, Canada as revealed by their chemistry and noble gas isotopes. Geochim Cosmochim Acta 75(15):4228–4243Google Scholar
  191. Pinti DL, Marty B, Andrews JN (1997) Atmosphere-derived noble gas evidence for the preservation of ancient waters in sedimentary basins. Geology 25(2):111–114Google Scholar
  192. Pirajno F (2000) Ore deposits and mantle plumes. Kluwer Academic Publishers, DordrechtGoogle Scholar
  193. Pitre F, Pinti DL (2010) Noble gas enrichments in porewater of estuarine sediments and their effect on the estimation of net denitrification rates. Geochim Cosmochim Acta 74(2):531–539Google Scholar
  194. Plumlee GS, Goldhaber MB, Rowan EL (1995) Potential role of magmatic gases in the genesis of illinois-kentucky fluorspar deposits: implications from chemical reaction path modelling. Econ Geol Bull Soc Econ Geol 90(5):999–1011Google Scholar
  195. Podosek FA, Bernatowicz TJ, Kramer FE (1981) Adsorption of xenon and krypton on shales. Geochim Cosmochim Acta 45:2401–2415Google Scholar
  196. Podosek FA, Honda M, Ozima M (1980) Sedimentary noble gases. Geochim Cosmochim Acta 44:1875–1884Google Scholar
  197. Polito PA, Bone Y, Clarke JDA, Mernagh TP (2001) Compositional zoning of fluid inclusions in the Archaean Junction gold deposit, Western Australia: a process of fluid wall-rock interaction? Aust J Earth Sci 48(6):833–855Google Scholar
  198. Pollard PJ (2000) Evidence of a magmatic fluid and metal source for Fe-oxide Cu-Au mineralisation. In: Porter TM (ed) Hydrothermal iron oxide copper gold and related deposits: a global perspective, vol. PGC Publishing, Adelaide, pp 27–41Google Scholar
  199. Pollard PJ (2001) Sodic-(calcic) alteration in Fe-oxide-Cu-Au districts: and origin via unmixing of magmatic H2O-CO2-NaCl ± CaCl2-KCl fluids. Miner Deposita 36:93–100Google Scholar
  200. Polya DA, Foxford KA, Stuart F, Boyce A, Fallick AE (2000) Evolution and paragenetic context of low δD hydrothermal fluids from the Panasqueira W-Sn deposit, Portugal: new evidence from microthermometric, stable isotope, noble gas and halogen analyses of primary fluid inclusions. Geochim Cosmochim Acta 64(19):3357–3371Google Scholar
  201. Powell R, Will TM, Phillips GN (1991) Metamorphism in archean greenstone belts: calculated fluid compositions and implications for gold mineralization. J Metamorph Geol 9(2):141–150Google Scholar
  202. Pujol M, Marty B, Burnard P, Philippot P (2009) Xenon in archean barite: weak decay of 130Ba, mass-dependent isotopic fractionation and implication for barite formation. Geochim Cosmochim Acta 73(22):6834–6846Google Scholar
  203. Raquin A, Moreira MA, Guillon F (2008) He, Ne and Ar systematics in single vesicles: mantle isotopic ratios and origin of the air component in basaltic glasses. Earth Planet Sci Lett 274(1–2):142–150Google Scholar
  204. Reddy SM, Kelley SP, Magennis L (1997) A microstructural and argon laserprobe study of shear zone development at the western margin of the Nanga Parbat-Haramosh Massif, western Himalaya. Contrib Miner Petrol 128(1):16–29Google Scholar
  205. Robb LJ (2005) Introduction to Ore-Forming Processes, vol. Blackwell Publishing, p 373Google Scholar
  206. Rock NMS, Groves DI (1988) Do lamprophyres carry gold as well as diamonds? Nature 332(6161):253–255Google Scholar
  207. Roedder E (1971a) Fluid-inclusion evidence on the environment of formation of mineral deposits of the Southern Appalachian Valley. Econ Geol 66:777–791Google Scholar
  208. Roedder E (1971b) Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax. Colorado Econ Geol 66(1):98–118Google Scholar
  209. Roedder E (1984) Fluid Inclusions, vol 12. Mineralogical society of America. Bookcrafters, Inc., Chelsea, p 646Google Scholar
  210. Rudnick RL, Gao S (2003) Composition of the Continental Crust. In: Treatise of Geochemistry, vol 3. Elsevier Ltd., pp 1–64Google Scholar
  211. Rusk BG, Reed MH, Dilles JH, Klemm LM, Heinrich CA (2004) Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte. MT Chem Geol 210(1–4):173–199Google Scholar
  212. Russell MJ, Smith FW (1979) Plate separation, alkali magmatism and fluorite mineralisation in Northern and Central England. Transac Inst Min Metall Sect B-Appl Earth Sci 88(FEB):B30Google Scholar
  213. Sanchez V, Stuart FM, Martin-Crespo T, Vindel E, Corbella M, Cardellach E (2010) Helium isotopic ratios in fluid inclusions from fluorite-rich Mississippi Valley-Type district of Asturias, northern Spain. Geochem J 44(6):E1–E4Google Scholar
  214. Sandiford M, McLaren S, Neumann N (2002) Long-term thermal consequences of the redistribution of heat-producing elements associated with large-scale granitic complexes. J Metamorph Geol 20(1):87–98Google Scholar
  215. Scambelluri M, Bottazzi P, Trommsdorff V, Vannucci R, Hermann J, Gòmez-Pugnaire MT, Lòpez-Sànchez Vizcaino V (2001) Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth Planet Sci Lett 192(3):457–470Google Scholar
  216. Scambelluri M, Piccardo GB, Philippot P, Robbiano A, Negretti L (1997) High salinity fluid inclusions fromed from recycled seawater in deeply subducted alpine serpentinite. Earth Planet Sci Lett 148:485–499Google Scholar
  217. Scheidegger Y, Baur H, Brennwald MS, Fleitmann D, Wieler R, Kipfer R (2010) Accurate analysis of noble gas concentrations in small water samples and its application to fluid inclusions in stalagmites. Chem Geol 272(1–4):31–39Google Scholar
  218. Scheidegger Y, Brennwald MS, Fleitmann D, Jeannin PY, Wieler R, Kipfer R (2011) Determination of Holocene cave temperatures from Kr and Xe concentrations in stalagmite fluid inclusions. Chem Geol 288(1–2):61–66Google Scholar
  219. Schilling JC, Unni CK, Bender ML (1978) Origin of chlorine and bromine in the oceans. Nature 273:631–636Google Scholar
  220. Schwarz WH, Trieloff M, Altherr R (2005) Subduction of solar-type noble gases from extraterrestrial dust: constraints from high-pressure low-temperature metamorphic deep-sea sediments. Contrib Miner Petrol 149(6):675–684Google Scholar
  221. Shelton KL, Taylor RP, So CS (1987) Stable isotope studies of the Dae Hwa tungsten-molybdenum mine, Republic or Korea: evidence of progressive meteoric water interaction in a tungsten-bearing hydrothermal system. Econ Geol 82(2):471–481Google Scholar
  222. Sherlock S, Kelley S (2002) Excess argon evolution in HP-LT rocks: a UVLAMP study of phengite and K-free minerals, NW Turkey. Chem Geol 182(2–4):619–636Google Scholar
  223. Siemann MG (2003) Extensive and rapid changes in seawater chemistry during the Phanerozoic: evidence from Br contents in basal halite. Terra Nova 15(4):243–248Google Scholar
  224. Siemann MG, Schramm M (2000) Thermodynamic modelling of the Br partition between aqueous solutions and halite. Geochim Cosmochim Acta 64(10):1681–1693Google Scholar
  225. Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105(1):3–41Google Scholar
  226. Simmons SF, Sawkins FJ, Schlutter DJ (1987) Mantle derived helium in two Peruvian hydrothermal ore deposits. Nature 329:429–432Google Scholar
  227. Smith SP, Kennedy BM (1983) The solubility of noble gases in water and in NaCl brine. Geochim Cosmochim Acta 47:503–515Google Scholar
  228. So CS, Shelton KL, Seidemann DE, Skinner BJ (1983) The Dae Hwa tungsten-molybdenum mine, Republic of Korea: a geochemical study. Econ Geol 78(5):920–930Google Scholar
  229. Staudacher T, Allègre CJ (1988) Recycling of oceanic crust and sediments: the noble gas subduction barrier. Earth Planet Sci Lett 89(2):173–183Google Scholar
  230. Stuart FM, Burnard PG, Taylor RP, Turner G (1995) Resolving mantle and crustal contributions to ancient hydrothermal fluids: He–Ar isotopes in fluid inclusions from Dae Hwa W–Mo mineralisation, South Korea. Geochim Cosmochim Acta 59(22):4663–4673Google Scholar
  231. Stuart FM, Turner G (1992) The abundance and isotopic composition of the noble gases in ancient fluids. Chem Geol 101:97–109Google Scholar
  232. Stuart FM, Turner G (1998) Mantle-derived 40Ar in mid-ocean ridge hydrothermal fluids: implications for the source of volatiles and mantle degassing rates. Chem Geol 147(1–2):77–88Google Scholar
  233. Stuart FM, Turner G, Duckworth RC, Fallick AE (1994) Helium-isotopes as tracers of trapped hydrothermal fluids in ocean-floor sulphides. Geology 22(9):823–826Google Scholar
  234. Sumino H, Burgess R, Mizukami T, Wallis SR, Holland G, Ballentine CJ (2010) Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite. Earth Planet Sci Lett 294(1–2):163–172Google Scholar
  235. Sun XM, Zhang Y, Xiong DX, Sun WD, Shi GY, Zhai W, Wang SW (2009) Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China. Ore Geol Rev 36(1–3):235–249Google Scholar
  236. Svensen H, Banks DA, Austreim H (2001) Halogen contents of eclogite facies fluid inclusions and minerals: Caledonides, western Norway. J Metamorph Geol 19:165–178Google Scholar
  237. Sverjensky DA (1986) Genesis of Missisippi Valley-type lead-zinc deposits. Annu Rev Earth Planet Sci 14:177–199Google Scholar
  238. Swager CP (1985) Syndeformational Carbonate-replacement model for the copper mineralization at Mount Isa, Northwest Queensland: a microstructural study. Econ Geol 80:107–125Google Scholar
  239. Taylor HP (1997) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Wiley, New York, pp 229–302Google Scholar
  240. Thomas HV, Large RE, Bull SW, Maslennikov V, Berry RF, Fraser R, Froud S, Moye R (2011) Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at bendigo gold mine, Australia: insights for ore genesis. Econ Geol 106(1):1–31Google Scholar
  241. Tolstikhin I, Kamensky I, Tarakanov S, Kramers J, Pekala M, Skiba V, Gannibal M, Novikov D (2010) Noble gas isotope sites and mobility in mafic rocks and olivine. Geochim Cosmochim Acta 74(4):1436–1447Google Scholar
  242. Tomaru H, Fehn U, Lu ZL, Matsumoto R (2007a) Halogen systematics in the Mallik 5L–38 gas hydrate production research well, Northwest Territories, Canada: Implications for the origin of gas hydrates under terrestrial permafrost conditions. Appl Geochem 22(3):656–675Google Scholar
  243. Tomaru H, Fehn U, Lu ZL, Takeuchi R, Inagaki F, Imachi H, Kotani R, Matsumoto R, Aoike K (2009) Dating of dissolved iodine in pore waters from the gas hydrate occurrence offshore Shimokita Peninsula, Japan: 129I Results from the D/V Chikyu Shakedown Cruise. Resour Geol 59(4):359–373Google Scholar
  244. Tomaru H, Lu Z, Snyder GT, Fehn U, Hiruta A, Matsumoto R (2007b) Origin and age of pore waters in an actively venting gas hydrate field near Sado Island, Japan Sea: Interpretation of halogen and 129I distributions. Chem Geol 236(3–4):350–366Google Scholar
  245. Torgersen T (2010) Continental degassing flux of 4He and its variability. Geochem Geophys Geosyst 11Google Scholar
  246. Torgersen T, Kennedy BM, van Soest MC (2004) Diffusive separation of noble gases and noble gas abundance patterns in sedimentary rocks. Earth Planet Sci Lett 226(3–4):477–489Google Scholar
  247. Torgersen T, O’Donnell J (1991) The degassing flux from the solid earth: release by fracturing. Geophys Res Lett 18(5):951–954Google Scholar
  248. Turner G (1988) Hydrothermal fluids and argon isotopes in quartz veins and cherts. Geochim Cosmochim Acta 52:1443–1448Google Scholar
  249. Turner G, Bannon MP (1992) Argon isotope geochemistry of inclusion fluids from granite-associated mineral veins in Southwest and Northwest England. Geochim Cosmochim Acta 56(1):227–243Google Scholar
  250. Turner G, Burnard P, Ford JL, Gilmour JD, Lyon IC, Stuart FM (1993) Tracing fluid sources and interactions. Philisophical transactions of the Royal Society London A 344:127–140Google Scholar
  251. Turner G, Stuart F (1992) Helium heat ratios and deposition temperatures of sulfides from the ocean-floor. Nature 357(6379):581–583Google Scholar
  252. Viets JG, Hofstra AH, Emsbo P (1996) Solute composition of fluid inclusions in sphalerite from North American and European Mississippi Valley-Type ore deposits: ore fluids derived from evaporated seawater. Soc Econ Geol Spec Publ 4:465–482Google Scholar
  253. Viets JG, Leach DL (1990) Genetic implications of regional and temporal trends in ore fluid geochemistry of Mississippi valley: type deposits in the Ozark region. Econ Geol 85:842–861Google Scholar
  254. Valkiers S, Vendelbo D, Berglund M, de Podesta M (2010) Preparation of argon primary measurement standards for the calibration of ion current ratios measured in argon. Int J Mass Spectrom 291(1–2):41–47Google Scholar
  255. Wallace MW, Middleton HA, Johns B, Marshallsea S (2002) Hydrocarbons and Mississippi Valley-type sulfides in the devonian reef complexes of the eastern Lennard Shelf, Canning Basin, Western Australia. In: Keep M, Moss SJ (eds) The Sedimentary Basins of Western Australia 3: Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth, WA., vol., Perth, WA, pp 795–816Google Scholar
  256. Warren C, Sherlock S, Kelley S (2011) Interpreting high-pressure phengite 40Ar/39Ar laserprobe ages: an example from Saih Hatat, NE Oman. Contrib Miner Petrol 161(6):991–1009Google Scholar
  257. Webber AP, Roberts S, Burgess R, Boyce AJ (2011) Fluid mixing and thermal regimes beneath the PACMANUS hydrothermal field, Papua New Guinea: Helium and oxygen isotope data. Earth Planet Sci Lett 304(1–2):93–102Google Scholar
  258. Wei HX, Sun XM, Zhai W, Shi GY, Liang YH, Mo RW, Han MX, Yi JZ (2010) He-Ar-S isotopic compositions of ore-forming fluids in the Bangbu large-scale gold deposit in southern Tibet, China. Acta Petrol Sin 26(6):1685–1691Google Scholar
  259. Wilde AR (2011) Mount Isa copper orebodies: improving predictive discovery. Aust J Earth Sci 58(8):937–951Google Scholar
  260. Wilkinson JJ, Stoffell B, Wilkinson CC, Jeffries TE, Appold MS (2009) Anomalously metal-rich fluids form hydrothermal ore deposits. Science 323(5915):764–767Google Scholar
  261. Winckler G, Kipfer R, Aescbach-Hertig W, Botz R, Schmidt M, Schuler S, Bayer R (2000) Sub sea floor boiling of Red Sea Brines: new indication from noble gas data. Geochim Cosmochim Acta 64(9):1567–1575Google Scholar
  262. Yardley BWD (2005) 100th anniversary special paper: metal concentrations in crustal fluids and their relationship to ore formation. Econ Geol 100(4):613–632Google Scholar
  263. Yardley BWD, Banks D, Bottrell SH, Diamond LW (1993) Post-metamorphic gold-quartz veins from N.W. Italy: the composition and origin of the ore fluid. Mineral Mag 57:407–422Google Scholar
  264. Yokochi R, Marty B, Pik R, Burnard P (2005) High 3He/4He ratios in peridotite xenoliths from SW Japan revisited: Evidence for cosmogenic 3He released by vacuum crushing. Geochem Geophys Geosyst 6:12Google Scholar
  265. Zaikowski A, Kosanke BJ, Hubbard N (1987) Noble gas composition of deep brines from the Palo Duro Basin, Texas. Geochim Cosmochim Acta 51:73–84Google Scholar
  266. Zeng Z, Qin Y, Zhai S (2001) He, Ne and Ar isotope compositions of fluid inclusions in hydrothermal sulfides from the TAG hydrothermal field Mid-Atlantic Ridge. Sci China Ser D Earth Sci 44(3):221–228Google Scholar
  267. Zherebtsova IK, Volkova NN (1966) Experimental study of behaviour of trace elements in the process of natural solar evaporation of Black Sea water and Lake Sasky-Sivash brine. Geochem Int 3:656–670Google Scholar
  268. Zhou S, Ye X (2002) Noble gas isotopic compositions of deep carbonate rocks from the Tarim Basin. Chin Sci Bull 47(9):774–778Google Scholar
  269. Ziegler JF (1980) Hanfbook of stopping cross-sections for energentic ions in all elements. Pergamon Press, New YorkGoogle Scholar
  270. Zuber A, Weise SM, Osenbruck K, Matenko T (1997) Origin and age of saline waters in Busko Spa (Southern Poland) determined by isotope, noble gas and hydrochemical methods: evidence of interglacial and pre-quaternary warm climate recharges. Appl Geochem 12(5):643–660Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Earth SciencesUniversity of MelbourneVictoriaAustralia
  2. 2.CRPG- CNRSNancy-UniversitéVandoeuvre-lès-Nancy CedexFrance

Personalised recommendations