The Analysis and Interpretation of Noble Gases in Modern Hydrothermal Systems

  • Yuji SanoEmail author
  • Tobias P. Fischer
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)


This chapter describes the practice in the analysis and interpretation of noble gases in modern hydrothermal systems, including sample collection and analytical methods, implications of geographical distribution of helium isotopes in the large scale (100–1000 km) and the small scale (1–100 km), temporal variation of helium isotopes in some volcanoes, and the other noble gas isotope and abundance variations in hydrothermal systems. First, details of sampling method of volcanic and hot spring gases are discussed together with characteristics of two types containers, Giggenbach-type and lead-glass. Second, analytical techniques of noble gas abundances by an isotope dilution method using a QMS-based system, and neon interference on helium isotope measurements by a magnetic sector type mass spectrometer are written precisely. Third, helium isotope variations in three modern volcanic regions, such as hot spot, mid-ocean ridge, and subduction zone are compiled and discussed together with geo-tectonic settings and geophysical data. Fourth, across the island arc variations of helium isotopes are described against recent seismic tomography data in Northeast Japan, Southwest Japan, North Island of New Zealand, and Kamchatka peninsula of Russia. Then smaller size of the isotope variations around the independent volcano such as Mt Ontake and Mt. Nevado del Ruiz are discussed. Fifth, temporal variations of helium and neon isotopes in volcanic discharges are discussed with examples showing the effects of changes in volcanic activity on noble gas ratios. Sixth, the isotopic compositions of neon, argon, krypton and xenon isotopes in volcanic and hydrothermal systems is discussed and related to mantle and crustal degassing processes. The last section (seven) provides applications of noble gases to traces sources and crustal contamination processes of more abundant gases such as carbon dioxide, methane and nitrogen with examples from well studied hydrothermal systems in New Zealand, Italy, Central America and Greece. In summary noble gases have a wide range of applications in volcanic and hydrothermal systems and are key indicators of tectonic setting, mantle and magma degassing; they provide valuable information on the current activity of a volcano and in combination with major gases can provide insights to understanding other geologically important volatiles such as carbon dioxide, methane and nitrogen.



We thank Pete Burnard for putting this volume together and having invited us to contribute. TF acknowledges the US National Science Foundation who supported the writing of this chapter through an NSF IPA appointment and IRD support. YS thanks to Hirochika Sumino for comments on the earlier version of the chapter.


  1. Aeschbach-Hertig W, Kipfer R, Hofer M, imboden DM, Wieler R, Signer P (1996) Quantification of gas fluxes from the subcontinental mantle: the example of Laacher See, a maar lake in Germany. Geochim Cosmochim Acta 60(1):31–41Google Scholar
  2. Aka FT, Nagao K, Kusakabe M, Sumino H, Tanyileke G, Ateba B, Hell J (2004) Symmetrical helium isotope distribution on the Cameroon Volcanic Line, West Africa. Chem Geol 203(3–4):205–223Google Scholar
  3. Aldrich LW, Nier AO (1948) The occurrence of 3He in natural sources of helium. Phys Rev 74:1590–1594Google Scholar
  4. Altemose VO (1961) Helium diffusion through glass. J App Phys 32:1309–1316Google Scholar
  5. Anders E, Grevesse N (1989) Abundances of the elements—meteoritic and solar. Geochim Cosmochim Acta 53:197–214Google Scholar
  6. Andrews J (1985) The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chem Geol 49:339–351Google Scholar
  7. Ballentine C, Burnard P (2002) Production, release and transport of noble gases in the continental crust. In: Porcelli D, Ballentine C, Wieler R (eds) Noble gases in geochemistry and cosmochemistry, vol 47. Mineralogical Society of America, Washington, pp 481–529Google Scholar
  8. Barfod D, Ballentine C, Halliday A, Fitton J (1999) Noble gases in the Cameroon line and the He, Ne, and Ar isotopic compositions of high mu (HIMU) mantle. J Geophys Res 104(29–29):527. doi: Scholar
  9. Baskov YA, Vetsheyn VY, Surikov SN, Tostikhin IN, Malyuk GA, Mishina TA (1973) Isotope composition of H, O, C, Ar and He in hot springs and gases in the Kuril–Kamtchatka volcanic region as indicators of formation conditions. Geochem Int 10:130–138Google Scholar
  10. Beterle U, Aeschbach-Hertig W, Imboden DM, Baur H, Graf T, Kipfer R (2000) A mass spectrometric system for the analysis of noble gases and tritium from water samples. Environ Sci Technol 34:2042–2050Google Scholar
  11. Binachi D, Sarmiento JL, Gnanadesikan A, Key RM, Schlosser P, Newton R (2010) Low helium flux from the mantle inferred from simulations of oceanic helium isotope data. Earth Planet Sci Lett 297:379–386Google Scholar
  12. Braeuer K, Kaempf H, Niedermann S, Strauch G, Weise SM (2004) Evidence for a nitrogen flux directly derived from the European subcontinental mantle in the Western Eger Rift, Central Europe. Geochim Cosmochim Acta 68:4935–4947Google Scholar
  13. Braitseva OA, Melekestsev IV, Ponomareva VV, Sulerzhitsky LD (1995) Ages of calderas, large explosive craters and active volcanoes in the Kurile–Kamchatka region, Russia. Bull Volcanol 57:383–402Google Scholar
  14. Breddam K, Kurz MD, Storey M (2000) Mapping out the conduit of the Iceland mantle plume with helium isotopes. Earth Planet Sci Lett 176:45–55Google Scholar
  15. Burnard PG, Graham DW, Turner G (1997) Vesicle specific noble gas analyses of “popping rock”: implications for primordial noble gases in earth. Science 276:568–571Google Scholar
  16. Caracausi A, Italiano F, Paonita A, Rizzo A, Nuccio PM (2003) Evidence of deep magma degassing and ascent by geochemistry of peripheral gas emissions at Mount Etna (Italy): assessment of the magmatic reservoir pressure. J Geophys Res 108(NO. B10):2463Google Scholar
  17. Canalas RA, Alexander EC, Manuel OK (1968) Terrestrial abundances of noble gas. J Geophys Res 73:3331–3334Google Scholar
  18. Charlou J, Fouquet Y, Donval J, Auzende J, Jean-Baptiste P, Stienvenard M, Michel S (1996) Mineral and gas chemistry of hydrothermal fluids along an ultra-fast spreading ridge: East Pacific Rise, 17°S to 19°S (NAUDUR cruise, 1993). Phase separation process controlled by volcanic and tectonic activity. J Geophys Res 101:11591–15899Google Scholar
  19. Charlou JL, Fouquet Y, Bougault H, Donval JP, Etoubleau J, Jean-Baptiste P, Dapoigny A, Appriou P, Rona PA (1998) Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15∞20′N fracture zone and the Mid-Atlantic Ridge. Geochim Cosmochim Acta 62(13):2323–2333Google Scholar
  20. Charlou J, Donval J, Douville E, Jean-Baptiste P, Radford-Knoery J, Fouquet Y, Dapoigny A, Stievenard M (2000) Compared geochemical signatures and evolution of Menez Gwen (37°50N) and Lucky Strike (37°17N) hydrothermal fluids, south of the Azores Triple junction on the Mid-Atlantic Ridge. Chem Geol 171:49–75Google Scholar
  21. Charlou J, Donval J, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the rainbow hydrothermal field (36°14N, MAR). Chem Geol 191:345–359Google Scholar
  22. Christiansen RL, Foulger GR, Evans JR (2002) Upper mantle origin of the Yellowstone hot spot. Geol Soc Amer Bull 114:1245–1256Google Scholar
  23. Clarke WB, Beg MA, Craig H (1969) Excess 3He in the sea: evidence for terrestrial primordial helium. Earth Planet Sci Lett 6:213–220Google Scholar
  24. Clift P, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys 42:RG2001Google Scholar
  25. Clor LE, Fischer TP, Hilton DR, Sharp ZD, Hartono U (2005) Volatile and N isotope chemistry of the Molucca Sea collision zone: tracing source components along the Sangihe Arc, Indonesia. Geochem Geophys Geosyst 6:Q03J14. doi: Scholar
  26. Cole JW, Lewis KB (1981) Evolution of the Taupo Hikurangi subduction system. Tectonophysics 72:1–21Google Scholar
  27. Corliss JB, Dymond J, Gordon LI, Edmond JM, von Herzen RP, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal springs on the Galapagos Rift. Science 203:1073–1083Google Scholar
  28. Courtillot V, Davaille A, Besse J, Stock J (2003) Three distinct types of hot spots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308Google Scholar
  29. Craig H (1953) The geochemistry of sable carbon isotopes. Geochim Cosmochim Acta 3:53–92Google Scholar
  30. Craig H (1963) The isotopic geochemistry of water and carbon in geothermal areas. In: Nuclear geology on geothermal area (9–13 Sept 1963), pp 17–53. Consiglio Nazionale delle Richerche, Laboratorio di Geologia Nucleare, PisaGoogle Scholar
  31. Craig H, Lupton JE (1976) Primordial neon, helium, and hydrogen in oceanic basalts. Earth Planet Sci Lett 31:369–385Google Scholar
  32. Craig H, Lupton JE (1981) Helium 3 and mantle volatiles in the ocean and the oceanic crust. In: The oceanic lithosphere, vol 7, The sea, vol 7, chapter 11. Wiley, LondonGoogle Scholar
  33. Craig H, Lupton JE, Welhan JA, Poreda R (1978) Helium isotope ratios in Yellowstone and Lassen Park volcanic gases. Geophys Res Lett 5(897–900): Google Scholar
  34. Crossey LJ, Karlstrom KE, Springer AE, Newell D, Hilton DR, Fischer T (2009) Degassing of mantle-derived CO2 and He from springs in the southern Colorado Plateau region-Neotectonic connections and implications for groundwater systems. Geol Soc Am Bull 121(7–8):1034–1053Google Scholar
  35. Davy B, Wood RA (1994) Gravity and magnetic modelling of the Hikurangi Plateau. Mar Geol 118:139–151Google Scholar
  36. de Leeuw GAM, Hilton DR, Fischer TP, Walker JA (2007) The He–CO2 isotope and relative abundance characteristics of geothermal fluids in El Salvador and Honduras: new constraints on volatile mass balance of the Central American Volcanic Arc. Earth Planet Sci Lett 158:132–146Google Scholar
  37. DeMetis C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Intl 101:425–478Google Scholar
  38. Dogan T, Sumino H, Nagao K,Notsu K (2006) Release of mantle helium from the forearc region of the Philippine Sea plate subduction. Chem Geol 233:235–248Google Scholar
  39. Dymond J, Hogan L (1974) The effects of deep-sea volcanism on the gas concentration of ocean water. J Geophys Res 79:877–880Google Scholar
  40. Eberhart-Phillips D, Reyners M, Chadwick M, Stuart G (2008) Three-dimensional attenuation structure of the Hikurangi subduction zone in the central North Island, New Zealand. Geophys J Intern 174:418–434Google Scholar
  41. Elkins L, Fischer TP, Hilton DR, Sharp ZD, McKnight S, Walker JA (2006) Tracing nitrogen in volcanic and geothermal volatiles from the Nicaraguan volcanic front. Geochim Cosmochim Acta 70:5215–5235Google Scholar
  42. Evans WC, Bergfeld D, van Soest MC, Huebner MA, Fitzpatrick J, Revesz KM (2006) Geochemistry of low-temperature springs northwest of Yellowstone caldera: seeking the link between seismicity, deformation, and fluid flow. J Volcanol Geotherm Res 154:169–180Google Scholar
  43. Faber E, Botz R, Poggenburg J, Schmidt M, Stoffers P, Hartmann M (1998) Methane in Red Sea brines. Org Geochem 29:363–379Google Scholar
  44. Fiebig J, Chiodini G, Caliro S, Rizzo A, Spangenberg J, Hunziker JC (2004) Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: generation of CH4 in arc magmatic-hydrothermal systems. Geochim Cosmochim Acta 68:2321–2334Google Scholar
  45. Fischer TP, Sturchio NC, Stix J, Arehart GB, Counce D, Williams SN (1997) The chemical and isotopic composition of fumarolic gases and spring discharges from Galeras Volcano, Colombia. J Volcanol Geotherm Res 77:229–254Google Scholar
  46. Fischer TP, Giggenbach WF, Sano Y, Williams SN (1998) Fluxes and sources of volatiles discharged from Kudryavy, a subduction zone volcano, Kurile Islands. Earth Planet Sci Lett 160:81–96Google Scholar
  47. Fischer TP, Hilton DR, Zimmer MM, Shaw AM, Sharp ZD, Walker JA (2002) Subduction and recycling of nitrogen along the Central American margin. Science 297:1154–1157Google Scholar
  48. Fischer TP, Burnard P, Marty B, Hilton DR, Furi E, Palhol F, Sharp ZD, Mangasini F (2009) Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites. Nature 459:77–80Google Scholar
  49. Fourre E, J-B P, J-L C, J-P D, I J (2006) Helium isotopic composition of hydrothermal fluids from the Manus back-arc Basin, Papua New Guinea. Geochem J 40:245–252Google Scholar
  50. Furi E, Hilton DR, Halldorsson SA, Barry PH, Hahm D, Fischer TP, Gronvold K (2010) Apparent decoupling of the He and Ne isotope systematics of the Icelandic mantle: The role of He depletion, melt mixing, degassing fractionation and air interaction. Geochim Cosmochim Acta 74(11):3307–3332Google Scholar
  51. Gamo T, Chiba H, Yamanaka T, Okudaira T, Hashimoto J, Tsuchida S, Ishibashi J, Kataoka S, Tsunogai U, Kouzuma F, Okamura K, Sano Y, Shinjo R (2001) Chemical characteristics of newly discovered black-smoker fluid venting and its effluent dispersion at the Rodriguez Triple Junction, Indian Ridge. Earth Planet Sci Lett 193:371–379Google Scholar
  52. Gamo T, Masuda H, Yamanaka T, Okamura K, Ishibashi J, Nakayama E, Obata H, Shitashima K, Nishio Y, Hasumoto H, Watanabe M, Mitsuzawa K, Seama N, Tsunogai U, Kouzuma F, Sano Y (2004) Discovery of a new hydrothermal venting site in the southernmost Mariana Arc: Al-rich hydrothermal plumes and white smoker activity associated with biogenic methane. Geochem J 38:527–534Google Scholar
  53. Ganino C, Arndt NT (2010) Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37:323–326Google Scholar
  54. German CR, Von Damm KL (2004) Hydrothermal processes. In: Treatise geochem (The oceans mar geochem), vol 6, pp 181–222Google Scholar
  55. Gharib J, Sansone F, Resing J, Baker E, Lupton J, Massoth G (2005) Methane dynamics in hydrothermal plumes over a superfast spreading center: East Pacific Rise, 27.5°–32.3°S. J Geophys Res 110:B10101Google Scholar
  56. Giggenbach WF (1975) A simple method for the collection and analysis of volcanic gas samples. Bull Volcanol 39(1):132–145Google Scholar
  57. Giggenbach WF (1984) Mass transfer in hydrothermal alteration systems. Geochim Cosmochim Acta 84(2693–2627):2611Google Scholar
  58. Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:141–161Google Scholar
  59. Giggenbach WF (1996) Chemical composition of volcanic gases. In: Scarpa R, Tilling R (eds) IAVCEI-UNESCO: monitoring and mitigation of volcano hazards, pp 221–256Google Scholar
  60. Giggenbach WF, Sano Y, Wakita H (1993) Isotopic composition of helium, and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary. Geochim Cosmochim Acta 57:3427–3455Google Scholar
  61. Giggenbach WF, Tedesco D, Sulisiyo Y, Caprai A, Cioni R, Favara R, Fischer TP, Hirabayashi J, Korzhinsky M, Martini M, Menyailov I, Shinohara H (2001) Evaluation of results from Forth and Fifth IAVCEI Field Workshop on Volcanic Gases, Vulcano Island, Italy and Java, Indonesia. J Volc Geotherm Res 108:283–302Google Scholar
  62. Goff F, McMurtry GM, Counce D, Stimac JA, Roldan-Manzo AR, Hilton DR (2000) Contrasting hydrothermal activity at Sierra Negra and Alcedo volcanoes, Galapagos Archipelago, Ecuador. Bull Volc 62:34–52Google Scholar
  63. Gold T (1979) Terrestrial sources of carbon and earthquake outgassing. J Pet Geol 1:3–19Google Scholar
  64. Gonnermann HM, Mukhopadhyay S (2007) Non-equilibrium degassing and a primordial source of helium in ocean-island volcanism. Nature 449:1037–1040Google Scholar
  65. Gorbatov A, Domínguez J, Suárez G, Kostoglodov V, Zhao D (1999) Tomographic imaging of the P-wave velocity structure beneath the Kamchatka peninsula. Geophys J Int 137:269–279Google Scholar
  66. Graham DW (2002) Noble gas isotope geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: characterization of mantle source regions. In: Porcelli D, Ballentine C, Wieler R (eds) MSA special volume: noble gases, vol 47, pp 247–317Google Scholar
  67. Grassineau NV (2006) High-precision EA-IRMA analysis of S and C isotopes in geological materials. App Geochem 21:756–765Google Scholar
  68. Gunter BD, Musgrave JA (1966) Gas chromatographic measurements of hydrothermal emanations at Yellowstone National Park. Geochim Cosmochim Acta 30:1175–1189Google Scholar
  69. Hacker BR, Peacock SM, Abers GA, Holloway SD (2003) Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked metamorphic dehydration reaction? J Geophys Res 108:2030. doi:
  70. Hasegawa A, Nakajima J (2004) Geophyscial constraints on slab subduction and arc magmatism. In: The state of the planet: frontiers and challenges in geophysics. Geophysical Monograph 150, IUGG, vol 19, pp 1–13Google Scholar
  71. Hearn EH, Kennedy BM, Trudell AH (1990) Coupled variations in helium isotopes and fluid chemistry: Shoshone Geyser Basin, Yellowstone National Park. Geochim Cosmochim Acta 54:3103–3113Google Scholar
  72. Heiweil VM, Solomon DK, Gingerich SB, Verstraeten IM (2009) Oxygen, hydrogen, and helium isotopes for investigating groundwater systems of the Cape Verde Islands, West Africa. Hydrogeol J 17:1157–1174Google Scholar
  73. Hilton DR (1996) The helium and carbon isotope systematics of a continental geothermal system—results from monitoring studies at Long Valley Caldera (California, USA). Chem Geol 127:269–295Google Scholar
  74. Hilton DR, Hammerschidt K, Look G, Friedrichsen H (1993a) Helium and argon isotope systematics of the central Lau Basin and Valu Fa Ridge: evidence of crust/matle interactions in a back-arc basin. Geochim Cosmochim Acta 57:2819–2841Google Scholar
  75. Hilton DR, Hammerschmidt K, Teufel S, Friedrichsen H (1993b) Helium isotope characteristics of Andean geothermal fluids and lavas. Earth Planet Sci Lett 120:265–282Google Scholar
  76. Hilton DR, Gronvold K, Sveinbjornsdottir AE, Hammerschmidt K (1998) Helium isotope evidence for off-axis degassing of the Icelandic hot spot. Chem Geol 149:173–187Google Scholar
  77. Hilton DR, Macpherson CG, Elliott TR (2000) Helium isotope ratios in mafic phenocrysts and geothermal fluids from La Palma, the Canary Islands (Spain): implications for HIMU mantle sources. Geochim Cospmochim Acta 64:2119–2132Google Scholar
  78. Hilton DR, Fischer TP, Marty B (2002) Noble gases in subduction zones and volatile recycling. In: Porcelli D, Ballentine C, Wieler R (eds) MSA special volume: noble gases in geochemistry and cosmochemistry. 47:319–362Google Scholar
  79. Hilton DR, Ramirez CJ, Mora-Amador R, Fischer TP, Furi E, Barry PH, Shaw AM (2010) Monitoring of temporal and spatial variations in fumarole helium and carbon dioxide characteristics at Poas and Turrialba volcanoes, Costa Rica (2001–2009). Geochem J 44:431–440Google Scholar
  80. Honda M, Reynolds JH, Roedder E, Epstein S (1987) Noble gases in diamonds: occurrences of solar like helium and neaon. J Geophys Res 92:12507–12521Google Scholar
  81. Hooft EEE, Toomey DR, Solomon SC (2003) Anomalously thin transition zone beneath the Galapagos hotspot. Earth Planet Sci Lett 216:55–64Google Scholar
  82. Horiguchi K, Ueki S, Sano Y, Takahata N, Hasegawa A, Igarashi G (2010) Geographical distribution of helium isotope ratios in northeastern Japan. Island Arc 19:60–70Google Scholar
  83. Hulston JR, Lupton JE (1996) Helium isotope studies of geothermal fields in the Taupo Volcanic Zone, New Zealand. J Volcanol Geoth Res 74(3–4):297–321Google Scholar
  84. Hulston JR, Hilton DR, Kaplan IR (2001) Helium and carbon isotope systematics of natural gases from Taranaki Basin, New Zealand. Appl Geochem 16:419–436Google Scholar
  85. Ide S, Shiomi K, Mochizuki K, Tonegawa T, Kimura G (2010) Split Philippine Sea plate beneath Japan. Geophys Res Lett 37:L21304. doi: Scholar
  86. Igarashi G, Kodera M, Ozima M, Sano Y, Wakita H (1987) Noble gas elemental and isotopic abundances in deep sea trench in the West Pacific. Earth Planet Sci Lett 86:77–84Google Scholar
  87. Inguaggiato S, Taran Y, Grassa F, Capasso G, Favara R, Varley N, Faber E (2004) Nitrogen isotopes in thermal fluids of a forearc region (Jalisco Block, Mexico): evidence for heavy nitrogen from continental crust. Geochem Geophys Geosyst 5Google Scholar
  88. Ishibashi J, Wakita H, Nojiri Y, Grimaud D, Jean-Baptiste P, Gamo T, Auzende J, Urabe T (1994) Helium and carbon geochemistry of hydrothermal fluids from the North Fiji Basin spreading ridge (southwest Pacific). Earth Planet Sci Lett 128:183–197Google Scholar
  89. Ishibashi J, Sano Y, Wakita H, Gamo T, Tsutsumi M, Sakai H (1995) Helium and carbon geochemistry of hydrothermal fluids from the Mid-Okinawa Trough Back Arc Basin, southwest of Japan. Chem Geol 123(1‚Äì4):1–15Google Scholar
  90. Iwamori H (1998) Transportation of H2O and melting in subduction zones. Earth Planet Sci Lett 160:65–80Google Scholar
  91. Jaffe LA, Hilton DR, Fischer TP, Hartono U (2004) Tracing magma sources in an arc–arc collision zone: helium and carbon isotope and relative abundance systematics of the Sangihe Arc, Indonesia. Geochem Geophys Geosyst 5:Q04J10. doi: Scholar
  92. Jambon A, Weber H, Braun O (1986) Solubility of He, Ne, Ar, Kr, and Xe in a basalt melt in the range 1250–1600 °C. Geochemical implications. Geochim Cosmochim Acta 50:401–408Google Scholar
  93. Jean-Baptiste P, Charlou JL, Stievenard M, Donval JP, Bougault H, Mevel C (1991) Helium and methane measurements in hydrothermal fluids from the Mid-Atlantic-Ridge: the Snakepit site at 23°N. Earth Planet Sci Lett 106:17–28Google Scholar
  94. Jean-Baptiste P, Charlou J, Fouquet Y, Dapoigny A, Stievenard M, Donval J, Auzende J (1997) Helium and oxygen isotope analyses of hydrothermal fluids from the East Pacific Rise between 17°S and 19°S. Geo-Marine Lett 17:213–219Google Scholar
  95. Jean-Baptiste P, Bougault H, Vangriesheim A, Charlou J, Radford-Knoery J, Fouquet Y, Needham D, German C (1998) Mantle 3He in hydrothermal vents and plume of the Lucky Strike site (MAR 37°17N) and associated geothermal heat flux. Earth Planet Sci Lett 157:69–77Google Scholar
  96. Jean-Baptiste P, Fourr E, Charlou J-L, German CR, Radford-Knoery J (2004) Helium isotopes at the rainbow hydrothermal site (Mid-Atlantic Ridge, 36°14′N). Earth Planet Sci Lett 221(1–4):325–335Google Scholar
  97. Jean-Baptiste P, Allard P, Bani P, Garaebiti E, Pelletier B, Fourré E, Metrich N (2009) Highly variable helium isotope ratios in the Vanuatu volcanic arc. Amer Geophys Union, Fall Meeting 2009, abstract #T21A-1774Google Scholar
  98. Jean-Baptiste P, Allard P, Coutinho R, Ferreira T, FourrÈ E, Queiroz G, Gaspar JL (2009b) Helium isotopes in hydrothermal volcanic fluids of the Azores archipelago. Earth Planet Sci Lett 281(1–2):70–80Google Scholar
  99. Jenden PD, Kaplan IR, Poreda R, Craig H (1988) Origin of nitrogen-rich gases in the Califronia Great Valley: evidence from helium, carbon and nitrogen isotope ratios. Geochim Cosmochim Acta 52:852–861Google Scholar
  100. Jenden PD, Hilton DR, Kaplan IR, Craig H (1993) Abiogenic hydrocarbons and mantle helium in oil and gas field. In: Howell DG (ed) The future of energy gases. US Geol Survey Prof Paper 1570:31–56Google Scholar
  101. Jenkins WJ (1987) 3H and 3He in the beta triangle: observations of gyre ventilation and oxygen utilization rates. J Phys Oceanogr 17:763–783Google Scholar
  102. Jiang G, Zhao D, Zhang G (2009) Seismic tomography of the Pacific slab edge under Kamchatka. Tectonophysics 465:190–203Google Scholar
  103. JinXing D, CaiNeng Z, ShuiChang Z, Jian L, YunYan N, GuoYi H, Xia L, ShiZhen L, GuangYou Z, JingKui M, ZhiSheng L, AnPing H, Chun Y, QingHua Z, YanHua S, Ying Z, ChengHua M (2008) Discrimination of abiogenic and biogenic alkane gases. Sci China Ser D—Earth Sci 51:1737–1749Google Scholar
  104. Kamensky IL, Lobkov VA, Prasolov EM, Beskrovny NS, Kudryavtseva EI, Anufriev GS, Pavlov VP (1976) Components of the upper mantle in gases of Kamchatka. Insight from isotope data (He, Ne, Ar, and C). Geochem Int 1976:682–696Google Scholar
  105. Kawagucci S, Okamura K, Kiyota K, Tsunogai U, Sano Y, Tamaki K, Gamo T (2008) Hydrothermal plumes over the Central Indian Ridge, 18°–20°S. G-Cubed 9:Q10002Google Scholar
  106. Keir R, Schmale O, Seifert R, Sultenfub J (2009) Isotope fractionation and mixing in methane plumes from the Logatchev hydrothermal field. G-cubed 10:Q05005Google Scholar
  107. Kennedy BM, Lynch MA, Reynolds JH, Smith SP (1985) Intensive sampling of noble gases in fluids at Yellowstone: I Early overview of the data; regional patterns. Geochim Cosmochim Acta 49:1251–1261Google Scholar
  108. Kennedy BM, Reynolds JR, Smith SP, Truesdell AH (1987) Helium isotopes: Lower Geysir Basin, Yellowstone National Park. J Geophys Res 92:12477–12480Google Scholar
  109. Kennedy BM, Reynolds JH, Smith SP (1988) Noble gas geochemistry in thermal springs. Geochim Cosmochim Acta 52:1919–1928Google Scholar
  110. Kennedy BM, Hiyagon H, Reynolds JH (1990) Crustal neon: a striking uniformity. Earth Planet Sci Lett 98:277–286Google Scholar
  111. Kennedy BM, Hiyagon H, Reynolds JH (1991) Noble gases from Honduras geothermal sites. J Volcanol Geotherm Res 45(1–2):29–39Google Scholar
  112. Keosian J (1960) On the origin of life. Science 131:479–482Google Scholar
  113. Kim K, Welhan J, Craig H (1984) The hydrothermal vent fields at 13°N and 11°N on the East Pacific Rise: Alvin 1984 results. EOS 68:45Google Scholar
  114. Kodera M, Igarashi G, Ozima M (1988) Noble gases in hydrothermal plumes of Loihi Seamount. Earth Planet Sci Lett 87:266–272Google Scholar
  115. Kononov VI, Mamyrin VA, Polak BG, Khabarin LV (1974) Helium isotopes in gases of Icelandic hydrothermal. Dokl Akad Nauk SSSR 217:172–175Google Scholar
  116. Kulngoski JT, Hilton DR (2002) A quadrupole-based mass spectrometric system for the determination of noble gas abundances in fluids. Geochem Geophys Geosyst 3:U1–U10Google Scholar
  117. Kumagai H, Dick H, Kaneoka I (2003) Noble gas signatures of abyssal gabbros and peridotites at an Indian Ocean core complex. Geochem Geophys Geosyst 4:9107. doi: Scholar
  118. Kurz MD (1986) Cosmogenic helium in a terrestrial igneous rock. Nature 320:435–439Google Scholar
  119. Kurz MD, Meyer PS, Sigurdsson H (1985) Helium isotopic systematics within the neovolcanic zones of iceland. Earth Planet Sci Lett 74:291–305Google Scholar
  120. Kusakabe M, Nagao K, Ohba T, Seo J, Park S-H, Lee J, Park B-K (2009) Noble gas and stable isotope geochemistry of thermal fluids from Deception Island. Antarct Antarct Sci 21(3):255–267Google Scholar
  121. Langmuir CH, Vocke RD Jr, Hanson GN, Hart SR (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37:380–392Google Scholar
  122. Lee H-F, Yang TF, Lan TF, Chen C-H, Song S-R, Tsao S (2008) Temporal variations of gas compositions of fumaroles in the Tatun Volcano Group, northern Taiwan. J Volcanol Geoth Res 178(4):624–635Google Scholar
  123. Lei J, Zhao D (2006) A new insight into the Hawaiian plume. Earth Planet Sci Lett 241:438–453Google Scholar
  124. Li X, Kind R, Yuan X (2001) Upper mantle structure and transition zone thickness beneath ocean islands from receiver function study. Eos Trans AGU 82(47), Fall Meet Suppl, Abstract S42B-0633Google Scholar
  125. Lilley M, Baross J, Gordon L (1983) Reduced gases and bacteria in hydrothermal fluids The Galapagos spreading center and 21°N East Pacific Rise. In: Rona PA et al (ed) Hydrothermal processes at seafloor spreading centers, plenum, pp 411–419Google Scholar
  126. Lilley M, Butterfield D, Olson E, Lupton J, Macko S, Mcduff R (1993) Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature 364:45–47Google Scholar
  127. Lupton JE (1983) Terestrial rare gases: isotope tracer studies and clues to primordial components in the mmantle. Ann Rev Earth Planet Sci 11:371–414Google Scholar
  128. Lupton JE, Baker ET, Massoth GJ (1999) Helium, heat, and the generation of hydrothermal event plumes at mid-ocean ridges. Earth Planet Sci Lett 171(3):343–350Google Scholar
  129. Lux GE (1987) The behavior of noble gases in silicate liquids; solution, diffusion, bubbles and surface effects, with applications to natural samples. Geochim Cosmochim Acta 51(6):1549–1560Google Scholar
  130. Lyon GL, Giggenbach WF, Sano Y (1996) Variations in the chemical and isotopic composition of Taranaki gases and their possible causes. N Z Petrol Conf 1:171–174Google Scholar
  131. Magro G, Pennisi M (1991) Noble gases and nitrogen: mixing and temporal evolution in the fumarolic fluids of vulcano, Italy. J Volcanol Geotherm Res 47:237–247Google Scholar
  132. Mamyrin BA, Tolstikhin IN (1984) Helium Isotopes in nature. Elsevier, Amsterdam, p 273Google Scholar
  133. Mamyrin BA, Tolstikhin IN, Anufriyev GS, Kamenskiy IL (1969) Isotopic analysis of terrestrial helium on a magnetic resonance mass spectrometer. Geokhimiya 1969(595–602): Google Scholar
  134. Mariner RH, Evans WC, Presser TS, White LD (2003) Excess nitrogen in selected thermal and mineral springs of the cascade range in Northern California, Oregon, and Washington; sedimentary or volcanic in origin? J Volcanol Geotherm Res 121:99–114Google Scholar
  135. Marty B, Giggenbach WF (1990) Major and rare gases at White Island volcano, New Zealand: origin and flux of volatiles. Geophys Res Lett 17:247–250Google Scholar
  136. Marty B, Jambon A (1987) C/3He in volatile fluxes from the solid earth: implications for carbon geodynamics. Earth Planet Sci Lett 83:16–26Google Scholar
  137. Marty B, Jambon A, Sano Y (1989) Helium isotopes and CO2 in volcanic gases of Japan. Chem Geol 76:25–40Google Scholar
  138. Marty B, Appora I, Barrat JAA, Deniel C, Vellutini P, Vidal P (1993a) He, Ar, Sr, Nd and Pb isotopes in volcanic rocks from Afar: evidence for a primitive mantle component and constraints on magmatic sources. Geochem J 27:219–228Google Scholar
  139. Marty B, Meynier V, Nicolini E, Greissharber E, Toutain J (1993b) Geochemistry of gas emanations: a case study of the Rdunion. Hot Spot, Indian Ocean. Appl Geochem 8:141–152Google Scholar
  140. Matsuda T, Uyeda S (1971) On the Pacific-type orogeny and its model-extension of the paired belts concept and possible origin of marginal sea. Tectonophysics 11:5–27Google Scholar
  141. Matsumoto T, Kawabata T, Matsuda J, Yamamoto K, Mimura K (2003) 3He/4He ratios in well gases in the Kinki district, SW Japan: surface appearance of slab-derived fluids in a non-volcanic area in Kii Peninsula. Earth Planet Sci Lett 216:221–230Google Scholar
  142. Mazor E, Wasserburg GJ (1965) Helium, neon, argon, krypton, and xenon in gas emanations from Yellowstone and Lassen Volcanic National Parks. Geochim Cosmochim Acta 29:443–454Google Scholar
  143. Mazor E, Wasserburg GJ, Craig H (1964) Rare gases in Pacific Ocean water. Deep-sea Res 11:929–932Google Scholar
  144. Merlivat L, Pineau F, Javoy M (1987) Hydrothermal vent waters at 13°N on the East Pacific Rise: isotopic composition and gas concentration. Earth Planet Sci Lett 84:100–108Google Scholar
  145. Mizoue M, Nakamura M, Seto N, Ishiketa Y (1971) Crustal structure from travel times of reflected and refracted seismic waves recorded at Wakayama micro-earthquake observatory and its substations. Bull Earthquake Res Inst Univ Tokyo 49:33–62Google Scholar
  146. Montelli R, Nolet G, Dahlen FA, Masters G (2006) A catalogue of deep mantle plumes: new results from finite-frequency tomography. Geochem Geophys Geosys 7:Q11007Google Scholar
  147. Moreira M, Blusztajn J, Curtice J, Hart S, Dick H, Kurz M (2003) He and Ne isotopes in oceanic crust: implications for noble gas recycling in the mantle. Earth Planet Sci Lett 216:635–643Google Scholar
  148. Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43Google Scholar
  149. Morikawa N, Kazahaya K, Fourre E, Takahashi HA, Jean-Baptiste P, Ohwada M, LeGuern FJ, Nakama A (2008a) Magmatic He distribution around Unzen volcano inferred from intensive investigation of helium isotopes in groundwater. J Volcanol Geoth Res 175(1–2):218–230Google Scholar
  150. Morikawa N, Kazahaya K, Masuda H, Ohwada M, Nakama A, Nagao K, Sumino H (2008b) Relationship between geological structure and helium isotopes in deep groundwater from the Osaka Basin: application to deep groundwater hydrology. Geochem J 42:61–74Google Scholar
  151. Mortimer N, Parkinson D (1996) Hikurangi Plateau: a cretaceous large igneous province in the southwest Pacific Ocean. J Geophys Res 101:687–696Google Scholar
  152. Nagao K, Takaoka N, Matsubayashi O (1981) Rare gas isotopic compositions in natural gases of Japan. Earth Planet Sci Lett 53(2):175–188Google Scholar
  153. Nakai S, Wakita H, Nuccio PM, Italiano F (1997) MORB-type neon in an enriched mantle beneath Etna, Sicily. Earth Planet Sci Lett 153:57–66Google Scholar
  154. Nakajima J, Hasegawa A (2007) Tomographic evidence for the mantle upwelling beneath southwestern Japan and its implications for arc magmatism. Earth Planet Sci Lett 254:90–105Google Scholar
  155. Nakajima J, Matsuzawa T, Hasegawa A, Zhao D (2001) Three-dimensional structure of Vp, Vs and Vp/Vs beneath northeastern Japan: implications for arc magmatism and fluids. J Geophys Res 106:21843–21857Google Scholar
  156. Nakanishi M, Tamaki K, Kobayashi K (1992) A new Mesozoic isochron chart of the northwestern Pacific Ocean: Paleomagnetic and tectonic implications. Geophys Res Lett 19:693–696Google Scholar
  157. Nishio Y, Tsutsumi M, Gamo T, Sano Y (1995) Hydrogen effect on the d13C value of CO2 measured by mass spectrometer with electron impact ionization. Anal Sci 11:9–12Google Scholar
  158. Nolet G, Allen R, Zhao D (2007) Mantle plume tomography. Chem Geol 241:248–263Google Scholar
  159. Norton FJ (1953) Helium diffusion through glass. J Amer Ceramic Soc 36:90–96Google Scholar
  160. Notsu K, Nakai S, Igarashi G, Ishibashi J, Mori T, Suzuki M, Wakita H (2001) Spatial distribution and temporal variation of 3He/4He in hot spring gas released from Unzen volcanic area, Japan. J Volcanol Geotherm Res 111:89–98Google Scholar
  161. Nuccio PM, Paonita A (2000) Investigation of the noble gas solubility in H2O–CO2 bearing silicate liquids at moderate pressure II: the extended ionic porosity (EPI) model. Earth Planet Sci Lett 183:499–512Google Scholar
  162. Nuccio PM, Paonita A (2001) Magmatic degassing of multicomponent vapors and assessment of magma depth: application to Vulcano Island (Italy). Earth Planet Sci Lett 193(3–4):467–481Google Scholar
  163. Nuccio PM, Valenza V (1998) Magma degassing and geochemical detection of its ascent. In: Arehart GB, Hulston JR (eds) Water–rock interaction, pp 475–478 (Balkema AA, Brookfield, Vt)Google Scholar
  164. Nuccio PM, Paonita A, Rizzo A, Rosciglione A (2008) Elemental and isotope covariation of noble gases in mineral phases from Etnean volcanics erupted during 2001–2005, and genetic relation with peripheral gas discharges. Earth Planet Sci Lett 272(3–4):683–690Google Scholar
  165. Obara K (2002) Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296:1679–1681Google Scholar
  166. Ohno M, Sumino H, Hernandez PA, Sato T, Nagao K (2011) Helium isotopes in the Izu Peninsula, Japan: relation of magma and crustal activity. J Volcanol Geotherm Res 199:118–126Google Scholar
  167. Okino K, Shimakawa Y, Nagano S (1994) Evolution of the Shikoku Basin. J Geomag Geoelectr 46:463–479Google Scholar
  168. Okino K, Ohara Y, Kasuga S, Kato Y (1999) The Philippine Sea: new survey results reveal the structure and the history of the marginal basins. Geophys Res Lett 26:2287–2290Google Scholar
  169. O’Nions RK, Oxburgh ER (1988) Helium, volatiles fluxes and the development of continental crust. Earth Planet Sci Lett 90:331–347Google Scholar
  170. Oppenheimer C, Fischer T, Scaillet B (2012) Volcanic degassing: process and impact. In: Holland HD, Turekian KK, Rudnick RL (eds) The crust, treatise on geochemistry, vol 4, 2nd edn. Elsevier-Pergamon, OxfordGoogle Scholar
  171. Oxbough ER, O’Nions RK (1987) Helium loss, tectonics, and the terrestrial heat budget. Science 237:1583–1588Google Scholar
  172. Ozima M, Podosek FA (1983) Noble gas geochemistry. Cambridge University Press, Cambridge, p 367Google Scholar
  173. Ozima M, Podosek FA (2002) Noble gas geochemistry. Cambridge University Press, CambridgeGoogle Scholar
  174. Ozima M, Zashu S (1983) Noble gases in submarine pillow volcanic glasses. Earth Planet Sci Lett 62(1):24–40Google Scholar
  175. Pedroni A, Hammerschmidt K, Friedrichsen H (1999) He, Ne, Ar, and C systematics of geothermal emanations in the Lesser Antilles arc. Geochim Cosmochim Acta 63:515–532Google Scholar
  176. Perez NM, Nakai S, Wakita H, Hernandez PA, Salazar JM (1996) Helium_3 emission in and around Teide Volcano, Tenerife, Canary Islands, Spain. Geophys Res Lett 23:3531–3534Google Scholar
  177. Pierce KL, Morgan LA (1992) The track of the Yellowstone hot spot: volcanism, faulting and uplift. In: Link PK, Kuntz MA, Platt LB (eds) Regional geology of Eastern Idaho and Western Wyoming. Geological Society of America Memoir, vol 179, pp 1–53Google Scholar
  178. Pierce KL, Morgan LA (2009) Is the track of the Yellowstone hotspot driven by a deep mantle plume?—review of volcanism, faulting and uplift in light new data. J Volcanol Geotherm Res 188:1–25Google Scholar
  179. Pik R, Marty B, Hilton DR (2006) How many plumes in Africa? The geochemical point of view. Chem Geol 226:100–114Google Scholar
  180. Poole JC, McNeill GW, Langman SR, Dennis F (1997) Analysis of noble gases in water using quadrupole mass spectrometer in static mode. Appl Geochem 12:707–714Google Scholar
  181. Poreda RJ, Arnorsson S (1992) Helium isotopes in Icelandic geothermal systems: II. Helium-heat relationships. Geochim Cosmochim Acta 56:4229–4235Google Scholar
  182. Poreda R, Jeffrey PM, Kaplan IR, Craig H (1988) Magmatic helium in subduction-zone natural gases. Chem Geol 71:199–210Google Scholar
  183. Poreda RJ, Craig H, Arnorsson S, Welhan JA (1992) Helium isotopes in Icelandic geothermal systems: I. 3He, gas chemistry, and 13C relations. Geochim Cosmochim Acta 56:4221–4228Google Scholar
  184. Ray M, Hilton D, Munoz J, Fischer T, Shaw A (2009) The effects of volatile recycling, degassing and crustal contamination on the helium and carbon geochemistry of hydrothermal fluids from the Southern Volcanic Zone of Chile. Chem Geol 266:38–49Google Scholar
  185. Raynoud D, Jouzel J, Barnola JM, Chappellaz J, Delmas RJ, Lorius C (1993) The ice record of greenhouse gases. Science 259:926–934Google Scholar
  186. Reynes ME (1980) A microearthquake study of the plate boundary, North Island, New Zealand. Geophys J R Astr Soc 63:1–22Google Scholar
  187. Reynolds JH, Jeffrey PM, McCrory GA, Varga PM (1978) Improved charcoal trap for rare gas mass spectrometry. Rev Sci Instrum 49:547–548Google Scholar
  188. Rice DD, Claypool GE (1981) Generation, accumulation and resource potential of biogenic gas. Am Assoc Petrol Geol Bull 65:5–25Google Scholar
  189. Rison W, Craig H (1983) Helium isotopes and mantle volatiles in the Loihi Seamount and Hawaiian Island basalts and xenoliths. Earth Planet Sci Lett 66:407–426Google Scholar
  190. Ritsema J, Allen R (2003) The elusive mantle plume. Earth Planet Sci Lett 207:1–12Google Scholar
  191. Rizzo A, Caracausi A, Favara R, Martelli M, Paonita A, Paternoster M, Nuccio PM, Rosciglione A (2006) New insights into magma dynamics during last two eruptions of Mount Etna as inferred by geochemical monitoring from 2002 to 2005. Geochem Geophys Geosyst 7:Q06008. doi: Scholar
  192. Rogers WA, Burtiz RS, Alpert D (1954) Diffusion coefficient, solubility and permeability for helium in glass. J Appl Phys 25:868–875Google Scholar
  193. Rubey W (1951) Geologic history of sea water. Geol Soc Amer Bull 62:1111–1148Google Scholar
  194. Rudnicki M, Elderfield H (1992) Helium, radon and manganese at the TAG and Snakepit hydrothermal vent fields, 26° and 23°N, Mid-Atlantic Ridge. Earth Planet Sci Lett 113:307–321Google Scholar
  195. Saar MO, Castro MC, Hall CM, Manga M, Rose TP (2005) Quantifzing magmatic, crustal, and atmospheric helium contributions to volcanic aquifers using all stable noble gases: Implications for magmatism and groundwater flow. Geochem Geophys Geosyst 6:Q03008. doi: Scholar
  196. Sakamoto M, Sano Y, Wakita H (1992) 3He/4He ratios distribution in and around the Hakone volcano. Geochem J 26:189–195Google Scholar
  197. Sano Y, Marty B (1995) Origin of carbon in fumarolic gas from island arcs. Chem Geol 119:265–274Google Scholar
  198. Sano Y, Nakajima J (2008) Geographical distribution of 3He/4He ratios and seismic tomography in Japan. Geochem J 42:51–60Google Scholar
  199. Sano Y, Takahata N (2005) Measurements of noble gas solubility in seawater by a quadrupole mass spectrometer. J Oceanogr 61:465–473Google Scholar
  200. Sano Y, Wakita H (1985a) Distribution of 3He/4He ratios and its implications for geotectonic structure of the Japanese Islands. J Geophys Res 90:8729–8741Google Scholar
  201. Sano Y, Wakita H (1985b) Geographical distribution of 3He/4He ratios in Japan: imlications for arc tectonics and incipient magmatism. J Geophys Res 90:8729–8741Google Scholar
  202. Sano Y, Wakita H (1987) Helium isotopes and heat flow on the ocean floor. Chem Geol 66:217–226Google Scholar
  203. Sano Y, Wakita H (1988a) Helium isotope ratio and heat discharge rate in Hokkaido island, northeastern Japan. Geochem J 22:293–303Google Scholar
  204. Sano Y, Wakita H (1988b) Precise measurement of helium isotopes in terrestrial gases. Bull Chem Soc Japan 61:1153–1157Google Scholar
  205. Sano Y, Tominaga T, Wakita H (1982) Elemental and isotopic abundances of rare gses in natural gases obtained by a quadrapole mass spectrometer. Geochem J 16(6):279–286Google Scholar
  206. Sano Y, Nakamura Y, Wakita H, Urabe A (1984) Helium-3 emissions related to volcanic activity. Science 224:150–151Google Scholar
  207. Sano Y, Urabe A, Wakita H, Chiba H, Sakai H (1985) Chemical and isotopic composition of gases in geothermal fluids in Iceland. Geochem J 19:135–148Google Scholar
  208. Sano Y, Wakita W, Giggenbach WF (1987) Island arc tectonics of New Zealand manifested in helium isotope ratios. Geochim Cosmochim Acta 51:1855–1860Google Scholar
  209. Sano Y, Kusakabe M, Hirabayashi J, Nojiri Y, Shinohara H, Njine T, Tanyileke G (1990a) Helium and carbon fluxes in Lake Nyos, Cameroon: constraint on next gas burst. Earth Planet Sci Lett 99:303–314Google Scholar
  210. Sano Y, Wakita H, Williams SN (1990b) Helium isotope systematics at Nevado del Ruiz volcano, Colombia: implications for the volcanic hydrothermal system. J Volcanol Geotherm Res 42:41–52Google Scholar
  211. Sano Y, Sakamoto M, Ishibashi J, Wakita H, Matsumoto R (1992) Helium isotope ratios of pore gases in deep sea sediments, Leg 128. Init Rep Deep Sea Drilling Proj 127(128):747–751Google Scholar
  212. Sano Y, Hirabayashi J, Ohba T, Gamo T (1994) Carbon and helium isotopic ratios at Kusatsu-Shirane volcano, Japan. Appl Geochem 9:371–377Google Scholar
  213. Sano Y, Gamo T, Notsu K, Wakita H (1995) Secular variations of carbon and helium isotopes at Izu-Oshima Volcano, Japan. J Volcanol Geoth Res 64(1–2):83–94Google Scholar
  214. Sano Y, Gamo T, Williams SN (1997) Secular variations of helium and carbon isotopes at Galeras volcano, Colombia. J Volcanol Geotherm Res 77:255–266Google Scholar
  215. Sano Y, Nishio Y, Sasaki A, Gamo T, Nagao K (1998) Helium and carbon isotope systematics at Ontake volcano, Japan. J Geophys Res 103:23,863–823,873Google Scholar
  216. Sano Y, Takahata N, Nishio Y, Marty B (1998b) Nitrogen recycling in subduction zones. Geophys Res Lett 25:2289–2292Google Scholar
  217. Sano Y, Takahata N, Nishio Y, Fischer TP, Williams SN (2001) Volcanic flux of nitrogen from the Earth. Chem Geol 171:263–271Google Scholar
  218. Sano Y, Takahata N, Seno T (2006) Geographical distribution of 3He/4He ratios in the Chugoku district, Southwestern Japan. Pure Appl Geophys 163:745–757Google Scholar
  219. Sano Y, Kameda A, Takahata N, Yamamoto J, Nakajima J (2009) Tracing extinct spreading center in SW Japan by helium-3 emanation. Chem Geol 266:50–56Google Scholar
  220. Sarda P, Staudacher T, Allegre CJ (1988) Neon isotopes in submarine basalts. Earth Planet Sci Lett 91(1–2):73–88Google Scholar
  221. Schilling JG (1973) Iceland mantle plume: geochemical study of the Reykjanes Ridge: Sr isotope geochemistry. Nature 246:104–107Google Scholar
  222. Schoell M (1988) Multiple origins of methane in the Earth. Chem Geol 71(1–3):1–10Google Scholar
  223. Shaw AM, Hilton DR, Fischer TP, Walker JA, Alvarado GE (2003) Contrasting He-C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet Sci Lett 214:499–513Google Scholar
  224. Sherwood Lollar B, Frape SK, Wrise SM, Fritz P, Macko SA, Welhan JA (1993) Abiogenic methanogenesis in crystalline rocks. Geochim Cosmochim Acta 57:5087–5097Google Scholar
  225. Shih TC (1980) Magnetic lineations in the Shikoku Basin. Initial Rep Deep Sea Drill Proj 58:783–788Google Scholar
  226. Shimizu A, Sumino H, Nagao K, Notsu K, Mitropoulos P (2005) Variation in noble gas isotopic composition of gas samples from the Aegean arc, Greece. J Volcanol Geoth Res 140(4):321–339Google Scholar
  227. Shiono K, Sugi N (1985) Life of oceanic plate: cooling time and assimilation time. Tectonophysics 112:35–50Google Scholar
  228. Silveira G, Stutzmann E (2002) Anisotropic tomography of the Atlantic Ocean. Phys Earth Planet Inter 132:237–248Google Scholar
  229. Simmons S, Sawkins F, Schlutter D (1987) Mantle-derived helium in two Peruvian hydrothermal ore deposits. Nature 329:429–432Google Scholar
  230. Smith SP, Kennedy BM (1983) The solubility of noble gases in water and NaCl brine. Geochim Cosmochim Acta 47:503–515Google Scholar
  231. Smith SP, Kennedy BM (1985) Noble gas evidence for two fluids in the Baca (Valles Caldera) geothermal reservoir. Geochim Cosmochim Acta 1985:893–902Google Scholar
  232. Snyder G, Poreda R, Hunt A, Fehn U (2001) Regional variations in volatile composition: isotopic evidence for carbonate recycling in the Central American volcanic arc. G-cubed 2:2001GC000163Google Scholar
  233. Snyder G, Poreda RJ, Fehn U, Hunt A (2003) Sources of nitrogen and methane in Central American geothermal settings: noble gas and 129I evidence for crustal and magmatic volatile components. G-cubed 4:9001. doi:, 002003Google Scholar
  234. Sorey ML, Kennedy BM, Evans WC, Farrar CD, Suemnicht GA (1993) Helium isotope and gas discharge variations associated with crustal unrest in Long_valley Caldera, California, 1989–1992. J Geophys Res 98:15871–15889Google Scholar
  235. Sorey ML, Evans WC, Kennedy BM, Farrar CD, Hainsworth LJ, Hausback B (1998) Carbon dioxide and helium emissions from a reservoir of magmatic gases beneath Mammoth Mountain, California. J Geophys Res 103:15,303–315,323Google Scholar
  236. Steblov GM, Kogan MG, King RW, Scholz CH, Bürgmann R, Frolov DI (2003) Imprint of the North American plate in Siberia revealed by GPS. Geophys Res Lett 30. doi:
  237. Stephen H, Stephen T (1963) Solubilities of inorganic and organic componds, I. Binary systems, Part I. Pergamon PressGoogle Scholar
  238. Stuart FM, Turner G, Duckworth RC, Fallick AE (1994) Helium isotopes as tracers of trapped hydrothermal fluids in ocean- floor sulfides. Geology 22:823–826Google Scholar
  239. Sugimura A, Matsuda T, Chinzei K, Nakamura K (1963) Quantitative distribution of late Cenozoic volcanic materials in Japan. Bull Volcanol 26:125–140Google Scholar
  240. Sugisaki R (1978) Changing He/Ar and N2/Ar ratios of fault air may be earthquake precursors. Nature 275:209–211Google Scholar
  241. Sumino H, Notsu K, Nakai S, Sato M, Nagao K, Hosoe M, Wakita H (2004) Noble gas and carbon isotopes of fumarolic gas from Iwojima volcano, Izu-Ogasawara arc, Japan: implications for the origin of unusual arc magmatism. Chem Geol 209:153–157Google Scholar
  242. Sun SS, Tatsumoto M, Schilling JG (1975) Mantle plume mixing along the Reykjanes Ridge axis: lead isotope evidence. Science 190:143–147Google Scholar
  243. Svensen H, Planke S, Malthe-Sorenssen A, Jamtveit B, Myklebust R, Eldem TR, Rey SS (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429:542–545Google Scholar
  244. Taira A, Tokuyama H, Soh W (1989) Accretion tectonics and evolution of Japan. In: Ben Avraham Z (ed) The evolution of the Pacific Ocean Margins. Oxford University Press, New York, pp 100–123Google Scholar
  245. Takahata N, Nishio Y, Yoshida N, Sano Y (1998) Precise isotopic measurements of nitrogen at the sub-nanomole level. Anal Sci 14:485–491Google Scholar
  246. Takahata N, Yokochi R, Nishio Y, Sano Y (2003) Volatile element isotope systematics at Ontake volcano, Japan. Geochem J 37:299–310Google Scholar
  247. Takahata N, Agarwal M, Nishizawa M, Shirai K, Inoue Y, Sano Y (2005) Helium-3 plume over the East Pacific Rise at 25°S. Geophys Res Lett 32:L11608Google Scholar
  248. Taran YA (1985) Fumarolic activity of the Koryak volcano, Kamchatka, in 1983. Volcanol Seismol 5:82–85Google Scholar
  249. Taran YA (2009) Geochemistry of volcanic and hydrothermal fluids and volatile budget of the Kamchatka-Kuril subduction zone. Geochim Cosmochim Acta 73(4):1067–1094Google Scholar
  250. Taran YA, Giggenbach WF (2003) Geochemistry of light hydrocarbons in subduction-related volcanic and hydrothermal fluids. Soc Econ Geol Special Publ 10:61–74Google Scholar
  251. Taran YA, Znamenskiy VS, Yurova LM (1996) Geochemical model of the hydrothermal system of Baransky volcano, Iturup, Kuril islands. Volcanol Seismol 17:471–496Google Scholar
  252. Taran Y, Fischer TP, Pokrovsky B, Sano Y, Armienta MA, Macias JL (1998) Geochemistry of the volcano-hydrothermal system of El Chichon Volcano, Chiapas, Mexico. Bull Volcanol 59(6):436–449Google Scholar
  253. Taran Y, Gavilanes JC, Cortes A (2002a) Chemical and isotopic composition of fumarolic gases and the SO2 flux from Volcan de Colima, Mexico, between the 1994 and 1998 eruptions. J Volcanol Geoth Res 117(1–2):105–119Google Scholar
  254. Taran YA, Fischer TP, Cienfuegos E, Morales P (2002b) Geochemistry of hydrothermal fluids from an intraplate ocean island: Everman volcano, Socorro Island, Mexico. Chem Geol 188:51–63Google Scholar
  255. Taran Y, Varley NR, Inguaggiato S, Cienfuegos E (2010) Geochemistry of H2- and CH4-enriched hydrothermal fluids of Socorro Island, Revillagigedo Archipelago, Mexico. Evidence for serpentinization and abiogenic methane. Geofluids 10(4):542–542–555Google Scholar
  256. Tatsumi Y, Sakuyama M, Fukuyama H, Kushiro I (1983) Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones. J Geophys Res 88:5815–5825Google Scholar
  257. Tatsumoto M (1966) Genetic relation of oceanic basalts as indicated by lead isotopes. Science 153:1094–1095Google Scholar
  258. Tedesco D (1995) Fluid geochemistry at Vulcano Island: a change in volcanic regime or continuous fluctuations in the mixing of different systems? J Geophys Res 100:4157–4167Google Scholar
  259. Tedesco D, Nagao K (1996) Radiogenic 4He, 21Ne and 40Ar in fumarolic gases on Vulcano: implication for the presence of continental crust beneath the island. Earth Planet Sci Lett 144(3–4):517–528Google Scholar
  260. Tedesco D, Scarsi P (1999) Intensive gas sampling of noble gases and carbon at Vulcano Island (southern Italy). J Geophys Res 104 B5:10, 499–410, 510Google Scholar
  261. Tedesco D, Allard P, Sano Y, Wakita H, Pece R (1990) Helium-3 in subaerial and submarine fumaroles of Campi Flegrei caldera, Italy. Geochim Cosmochim Acta 54(4):1105–1116Google Scholar
  262. Tedesco D, Nagao K, Scarsi P (1998) Noble gas isotopic ratios from historical lavas and fumaroles at Mount Vesuvius (southern Italy): constraints for current and future volcanic activity. Earth Planet Sci Lett 164(1–2):61–78Google Scholar
  263. Thorne MS, Garnero EJ, Grand SP (2004) Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys Earth Planet Inter 146:47–63Google Scholar
  264. Torgersen T, Jenkins WJ (1982) Helium isotopes in geothermal systems: Iceland, the Geysers, Raft River, and Steamboat Springs. Geochim Cosmochim Acta 46:739–748Google Scholar
  265. Torgersen T, Lupton JE, Sheppard DS, Giggenbach WF (1982) Helium isotope variations in the thermal areas of New Zealand. J Volcanol Geotherm Res 12(3–4):283–298Google Scholar
  266. Trull TW, Kurz MD (1999) Isotopic fractionation accompanying helium diffusion in basaltic glass. J Mol Struct 485–486:555–567Google Scholar
  267. Tsunogai U, Ishibashi J, Wakita H, Gamo T, Watanabe A, Kajimura T, Kanayama S, Sakai H (1994) Peculiar features of Suiyo Seamount hydrothermal fluids, Izu-Bonin Arc: differences from subaerial volcanism. Earth Planet Sci Lett 126:289–301Google Scholar
  268. Umeda K, Ogawa Y, Asamori K, Oikawa T (2006) Aqueous fluids derived from a subducting slab: observed high 3He emanation and conductive anomaly in a non-volcanic region, Kii Peninsula southwest Japan. J Volcan Geotherm Res 149:47–61Google Scholar
  269. Umeda K, Asamori K, Ninomiya A, Kanazawa S, Oikawa T (2007) Multiple lines of evidence for crustal magma storage beneath the Mesozoic crystalline Iide Mountains, northeast Japan. J Geophys Res -Solid Earth 112(B5):9Google Scholar
  270. Urabe A, Tominaga T, Nakamura Y, Wakita H (1985) Chemical compositions of natural gases in Japan. Geochem J 19(1):11–25Google Scholar
  271. van Soest MC, Hilton DR, Kreulen R (1998) Tracing crustal and slab contributions to arc magmatism in the Lesser Antilles island arc using helium and carbon relationships in geothermal fluids. Geochim Cosmochim Acta 62:3323–3335Google Scholar
  272. Wakita H, Sano Y (1983) 3He/4He ratios in CH4-rich natural gases suggest magmatic origin. Nature 305:792–794Google Scholar
  273. Wakita H, Sano Y, Mizoue M (1987) High 3He emanation and seismic swarm activities observed in a non-volcanic, frontal arc region. J Geophys Res 92:12539–12546Google Scholar
  274. Wakita H, Sano Y, Urabe A, Nakamura Y (1990) Origin of methane-rich natural gas in Japan: formation of gas fields due to large-scale submarine volcanism. Appl Geochem 5(3):263–278Google Scholar
  275. Wallace LM, Beavan J, McCaffrey R, Darby D (2004) Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J Geophys Res 109:B12406. doi: Scholar
  276. Weiss RF (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res 17:721–735Google Scholar
  277. Welhan JA (1988) Origins of methane in hydrothermal systems. Chem Geol 71:183–198Google Scholar
  278. Welhan JA, Craig H (1982) Biogenic methane in mid-ocean ridge hydrothermal fluids. In: Gwillian WJ (ed) Deep-source-gas workshop technical proceedings, pp 122–129Google Scholar
  279. Welhan JA, Craig H (1983) Methane, hydrogen and helium in hydrothermal fluids. In: Rona PA, Boström K, Laubier L, Smith KL (eds) Hydrothermal processes at seafloor spreading centers. NATO Conf/Ser IV, Mar Sci, vol 12, pp 391–409. Pleanum, New YorkGoogle Scholar
  280. Welhan JA, Lupton JE (1987) Light hydrocarbon gases in the Guaymas Basin hydrothermal fluids-thermogenic versus abiogenic origin. Am Assoc Pet Geol Bull 71:215–223Google Scholar
  281. Welhan J, Craig H, Kim K (1984) Hydrothermal gases at 11°N and 13°N on the East Pacific Rise. EOS 65:45Google Scholar
  282. Welhan JA, Poreda RJ, Rison W, Craig H (1988) Helium isotopes in geothermal and volcanic gases of the Western United States, II. Long Valley Caldera. J Volcanol Geoth Res 34(3–4):201–209Google Scholar
  283. Williams H, McBirney AR (1979) Volcanology. Freeman Cooper & Co., San Francisco, p 397Google Scholar
  284. Williams S, Sano Y, Wakita H (1987) Helium-3 emission from Nevado del Ruiz volcano, Colombia. Geophys Res Lett 14:1035–1038Google Scholar
  285. Williams SN, Calvache V ML, Sturchio NC, Zapata G JA, Mendez F RA, Calvache O B, Londoño C A, Gil C F, Sano Y (1990) Premonitory geochemical evidence of magmatic reactivation of Galeras volcano, Colombia. EOS (Transactions, American Geophysical Union) 74(43):690Google Scholar
  286. Wilson JT (1963) A possible origin of the Hawaiian Islands. Can J Phys 41:863–870Google Scholar
  287. Winckler G, Aeschbach-Hertig W, Kipfer R, Botz R, Rubel A, Bayer R, Stoffers P (2001) Constraints on origin and evolution of Red Sea brines from helium and argon isotopes. Earth Planet Sci Lett 184:671–683Google Scholar
  288. Yamano M, Honda S, Uyeda S (1984) Nankai trough—as a hot trench? Mar Geophys Res 6:187–203Google Scholar
  289. Yamasaki T, Seno T (2003) Double seismic zones and dehydration embrittlement of the subducting slab. J Geophys Res 108:2212. doi: Scholar
  290. Yang TF (2008) Recent progress in the application of gas geochemistry: examples from Taiwan and the 9th international gas geochemistry conference. Geofluids 8:219–229Google Scholar
  291. Yang TF, Lan TF, Lee HF, Fu CC, Chuang PH, Lo CH, Chen CH, Chen CTA, Lee CS (2005) Gas compositions and helium isotopic ratios of fluid samples around Kueishantao, NE offshore Taiwan and its tectonic implications. Geochem J 39:469–480Google Scholar
  292. Yang T, Shen Y, van der Lee S, Solomon SC, Hung S-H (2006) Upper mantle structure beneath the Azores hotspot from finite-frequency seismic tomography. Earth Planet Sci Lett 250:11–26Google Scholar
  293. Yoshii T (1977) Crust and upper-mantle structure beneath northeastern Japan (in Japanese). Kagaku 47:170–176Google Scholar
  294. Yuan H, Dueker K (2005) Teleseismic P-wave tomogram of the Yellowstone plume. Geophys Res Lett 32:L07304Google Scholar
  295. Zimmer MM, Fischer TP, Hilton DR, Alvarado GE, Sharp ZD, Walker JA (2004) Nitrogen systematics and gas fluxes of subduction zones: insights from Costa Rica arc volatiles. Geochem Geophys Geosyst 5(5). doi: Scholar
  296. Zindler A, Hart S (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571Google Scholar
  297. Zolotov MY, Shock EL (2000) A thermodynamic assessment of the potential synthesis of condensed hydrocarbons during cooling and dilution of volcanic gases. J Geophys Res 105:539–559Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Division of Ocean-Earth SystemsAtmosphere and Ocean Research Institute, The University of TokyoChibaJapan
  2. 2.Department of Earth and Planetary SciencesUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations