The Noble Gases as Geochemical Tracers: History and Background

Chapter
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

This chapter describes the discovery of the noble gases and the development of the first instrumentation used for noble gas isotopic analysis before outlining in very general terms how noble gases are analysed in most modern laboratories. Most modern mass spectrometers use electron impact sources and magnetic sector mass filters with detection by faraday cups and electron multipliers. Some of the performance characteristics typical of these instruments are described (sensitivity, mass discrimination). Extraction of noble gases from geological samples is for the most part achieved by phase separation, by thermal extraction (furnace) or by crushing in vacuo. The extracted gases need to be purified and separated by a combination of chemical and physical methods. The principles behind different approaches to calibrating the mass spectrometers are discussed.

Keywords

Mass Discrimination Secondary Electron Multiplier Resonance Ionization Mass Spectrometry Electron Impact Source Electron Beam Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aldrich LT, Nier AO (1948a) Argon 40 in potassium minerals. Phys Rev 74(8):876–877CrossRefGoogle Scholar
  2. Aldrich LT, Nier AO (1948b) The occurence of He-3 in natural sources of helium. Phys Rev 74(11):1590–1594CrossRefGoogle Scholar
  3. Alvarez LW, Cornog R (1939) He-3 in helium[4]. Phys Rev 56(4):379CrossRefGoogle Scholar
  4. Baur H (1980) Numerische simulation und praktische erprobung einer rotationssymmetrischen ionenquelle für gasmassenspektrometer. No. 6596. In, vol. ETH, ZürichGoogle Scholar
  5. Baur H (1999) A noble-gas mass spectrometer compressor source with two orders of magnitude improvement in sensitivity. EOS 80:F1118Google Scholar
  6. Beyerle U, Aeschbach-Hertig W, Imboden DM, Baur H, Graf T, Kipfer R (2000) A mass, spectrometric system for the analysis of noble gases and tritium from water samples. Environ Sci Technol 34(10):2042–2050CrossRefGoogle Scholar
  7. Botter R, Bouchoux G (1995) Spectrométrie de masse. Techniques de l’ingenieur, Analyse et caracterisation 4:2615Google Scholar
  8. Burnard PG, Farley KA (2000) Calibration of pressure-dependent sensitivity and discrimination in Nier-type noble gas ion sources. Geochem Geophys Geosyst 1:2000GC000038Google Scholar
  9. Burnard PG, Farley KA, Turner G (1998) Multiple fluid pulses in a samoan harzburgite. Chem Geol 148:99–114CrossRefGoogle Scholar
  10. Burnard PG, Harrison DW, Turner G, Nesbitt R (2003) Degassing and contamination of noble gases in Mid-Atlantic Ridge basalts. Geochem Geophys Geosyst 4(1). doi: 10.1029/2002GC000326
  11. Clarke WB, Beg MA, Craig H (1969) Excess 3He in the sea: evidence for terrestrial primordial He. Earth Planet Sci Lett 6:213–220Google Scholar
  12. Colin A, Burnard P, Graham DW, Marrocchi Y (2011) Plume-ridge interaction along the Galapagos Spreading Center: discerning between gas loss and source effects using neon isotopic compositions and 4He-40Ar-CO2 relative abundances. Geochim Cosmochim Acta (75):1145–1160. doi: 10.1016/j.gca.2010.11.018
  13. Coon JH (1949). He-3 isotopic abundance. Phy Rev 75(9):1355–1357Google Scholar
  14. Coulie E (2001) Chronologie Ar/Ar et K/Ar de la dislocation du plateau éthiopien et de la déchirure continentale dans la corne d’afrique depuis 30 Ma. In, vol. Université de Paris XI, OrsayGoogle Scholar
  15. Crowther SA, Mohapatra RK, Turner G, Blagburn DJ, Kehm K, Gilmour JD (2008) Characteristics and applications of RELAX, an ultrasensitive resonance ionization mass spectrometer for xenon. J Anal At Spectrom 23(7):938–947CrossRefGoogle Scholar
  16. Daunt JG, Probst RE, Johnston HL, Aldrich LT, Nier AO (1947) A new method of separation of the isotopes He3 and He4. Phys Rev 72(6):502–503CrossRefGoogle Scholar
  17. Dempster AJ (1918) A new method of positive ray analysis. Phys Rev 11(4):316–325CrossRefGoogle Scholar
  18. Farley KA (2002) (U-Th)/He dating: techniques, calibrations, and applications. Rev Mineral Geochem 47Google Scholar
  19. Foeken JPT, Stuart FM, Dobson KJ, Persano C, Vilbert D (2006) A diode laser system for heating minerals for (U-Th)/He chronometry. Geochem Geophys Geosyst 7(4)Google Scholar
  20. Gilmour JD, Lyon IC, Johnston WA, Turner G (1994) RELAX: an ultrasensitive, resonance ionization mass spectrometer for xenon. Rev Sci Instrum 65(3):617–625CrossRefGoogle Scholar
  21. Grochala W (2007) Atypical compounds of gases, which have been called ‘noble’. Chem Soc Rev 36(10):1632–1655CrossRefGoogle Scholar
  22. Holland G, Ballentine CJ (2006) Seawater subduction controls the heavy noble gas composition of the mantle. Nature 441(7090):186–191CrossRefGoogle Scholar
  23. Holland G, Cassidy M, Ballentine CJ (2009) Meteorite Kr in earth’s mantle suggests a late accretionary source for the atmosphere. Science 326(5959):1522–1525CrossRefGoogle Scholar
  24. Hooker PJ, Bertrami R, Lombardi S, O’Nions RK, Oxburgh ER (1985) Helium-3 anomalies and crust-mantle interaction in Italy. Geochim Cosmochim Acta 49(12):2505–2513CrossRefGoogle Scholar
  25. House MA, Farley KA, Stockli D (2000) Helium chronometry of apatite and titanite using Nd-YAG laser heating. Earth Planet Sci Lett 183(3–4):365–368Google Scholar
  26. Iwata Y, Ito C, Harano H, Aoyama T (2010) Improvement of the resonance ionization mass spectrometer performance for precise isotope analysis of krypton and xenon at the ppt level in argon. Int J Mass Spectrom 296(1–3):15–20Google Scholar
  27. Jenkins WJ (1987) H-3 and HE-3 in the beta triangle—observations of gyre ventilation and Oxygen Utilization rates. J Phys Oceanogr 17(6):763–783CrossRefGoogle Scholar
  28. Lavielle B, Gilabert E, Thomas B, Lavastre V (2006) New RIS-TOF facility for measuring very small Kr and Xe gas samples. Geochim Cosmochim Acta 70(18):A344–A344Google Scholar
  29. Lord Rayleigh; Ramsay W (1895) VI. Argon: a new constituent of the atmosphere. Philosop Trans Royal Soc London A 186:187-241Google Scholar
  30. Lott DE (2001) Improvements in noble gas separation methodology: a nude cryogenic trap. Geochem Geophys Geosyst 2:2001GC000202Google Scholar
  31. Lu ZT, Mueller P (2010) Atom trap trace analysis of rare noble gas isotopes. Adv At Mol Opt Phy 58:173–205CrossRefGoogle Scholar
  32. Lupton JE, Johnson HPe, Embley RWe (1990) Water column hydrothermal plumes on the Juan de Fuca Ridge, special section; axial seamount; an active ridge axis volcano on the central juan de Fuca ridge. J Geophys Res B: Solid Earth Planet 95(8):12,829–812,842Google Scholar
  33. Mamyrin BA, Anufriyev GS, Kamenskiy IL, Tolstikhin IN (1970) Determination of the isotopic composition of atmospheric helium. Geochem Int 7:498–505Google Scholar
  34. Mamyrin BA, Tolstikh In, Anufriye Gs, Kamenski Il (1969) Isotopic analysis of terrestrial helium on a magnetic resonance mass spectrometer. Geochem Int Ussr 6(3):517Google Scholar
  35. Marrocchi Y, Burnard PG, Hamilton D, Colin A, Pujol M, Zimmermann L, Marty B (2009) Neon isotopic measurements using high-resolution, multicollector noble gas mass spectrometer: HELIX-MC. Geochem Geophys Geosyst 10:art no. Q04015Google Scholar
  36. Matsuda J, Matsumoto T, Sumino H, Nagao K, Yamamoto J, Miura Y, Kaneoka I, Takahata N, Sano Y (2002) The 3He/4He ratio of new internal He standard of japan (HESJ). Geochem J 36(2):191–195CrossRefGoogle Scholar
  37. McNaught AD, Wilkinson A (1997) IUPAC Compendium of Chemical Terminology, 2nd edn. Blackwell Science, CambridgeGoogle Scholar
  38. Nagao K, Takaoka N, Matsubayashi O (1981) Rare gas isotopic compositions in natural gases of Japan. Earth Planet Sci Lett 53(2):175–188 Google Scholar
  39. Neidherr D, Cakirli RB, Audi G, Beck D, Blaum K, Bohm C, Breitenfeldt M, Casten RF, George S, Herfurth F, Herlert A, Kellerbauer A, Kowalska M, Lunney D, Minaya-Ramirez E, Naimi S, Rosenbusch M, Schwarz S, Schweikhard L (2009) High-precision Penning-trap mass measurements of heavy xenon isotopes for nuclear structure studies. Phys Rev C: Nucl Phys 80(4)Google Scholar
  40. Parai R, Mukhopadhyay S, Lassiter JC (2009) New constraints on the HIMU mantle from neon and helium isotopic compositions of basalts from the Cook-Austral Islands. Earth Planet Sci Lett 277(1–2):253–261Google Scholar
  41. Pinti DL, Marty B (1995) Noble gases in crude oils from the Paris Basin, France: implications for the origin of fluids and constraints on oil-water-gas interactions. Geochim Cosmochim Acta 59(16):3389–3404CrossRefGoogle Scholar
  42. Ramsay W, Travers MW (1898) On a new constituent of atmospheric air. Proc Royal Soc London 63 (1):405–408Google Scholar
  43. Raquin A, Moreira MA, Guillon F (2008) He, Ne and Ar systematics in single vesicles: mantle isotopic ratios and origin of the air component in basaltic glasses. Earth Planet Sci Lett 274(1–2):142–150Google Scholar
  44. Reynolds JH (1956) High sensitivity mass spectrometer for noble gas analysis. Rev Sci Instrum 27(11):928–934CrossRefGoogle Scholar
  45. Reynolds JH, Jeffery PM, McCrory GA, Varga PM (1978) Improved charcoal trap for rare gas mass spectrometry. Rev Sci Instrum 49(4):547–548CrossRefGoogle Scholar
  46. Sano Y, Wakita H (1988) Precise measurement of helium isotopes in terrestrial gases. Bull Chem Soc Japan 61:1153–1157 Google Scholar
  47. Sano Y, Tokutake T, Takahata N (2008) Accurate measurement of atmospheric helium isotopes. Anal Sci 24(4):521–525CrossRefGoogle Scholar
  48. Sano Y, Tominaga T, Nakamura Y, Wakita H (1982) He-3/He-4 ratios of methane-rich natural gases in japan. Geochem J 16(5):237–245CrossRefGoogle Scholar
  49. Sano Y, Wakita H (1985) Geographical distribution of (super 3) He/(super 4) He ratios in Japan; implications for arc tectonics and incipient magmatism. J Geophys Res B 90(10):8729–8741CrossRefGoogle Scholar
  50. Scarsi P (2000) Fractional extraction of helium by crushing of olivine and clinopyroxene phenocrysts: effects on the 3He/4He measured ratio. Geochim Cosmochim Acta 64(21):3751–3762CrossRefGoogle Scholar
  51. Strashnov I, Blagburn DJ, Gilmour JD (2011) A resonance ionization time of flight mass spectrometer with a cryogenic sample concentrator for isotopic analysis of krypton from extraterrestrial samples. J Anal At Spectrom 26(9):1763–1772CrossRefGoogle Scholar
  52. Stuart FM, Turner G, Taylor R (1994) He-Ar isotope systematics of fluid inclusions: resolving mantle and crustal contributions to hydrothermal fluids. In: Matsuda J (ed) Noble gas geochemistry and cosmochemistry. Terra Scientific, Tokyo, pp 261–277Google Scholar
  53. Thonnard N (1995) Resonance ionization of heavy noble-gases—the potential of krypton and xenon measurements from single presolar grains. Meteoritics 30(5):588Google Scholar
  54. Turner G, Burgess R, Bannon M (1990) Volatile-rich mantle fluids inferred from inclusions in diamond and mantle xenoliths. Nature 344:653–655CrossRefGoogle Scholar
  55. Wang LB, Mueller P, Holt RJ, Lu ZT, O’Connor TP, Sano Y, Sturchio NC (2003) Laser spectroscopic measurement of helium isotope ratios. Geophys Res Lett 30(11):1592CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Centre de Recherches Pétrographiques et GéochimiquesVandoeuvre-lès-Nancy CedexFrance
  2. 2.Center for Advanced Marine Research, Ocean Research InstituteThe University of TokyoNakano, TokyoJapan

Personalised recommendations