Advertisement

An Efficient k-Anonymization Algorithm with Low Information Loss

  • Md. Nurul HudaEmail author
  • Shigeki Yamada
  • Noboru Sonehara
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 156)

Abstract

Publishing microdata with preserving privacy led to the paradigms of k-anonymity. Sensitive information in k-anonymous microdata cannot be linked to specific individuals with a confidence value of more than 1/k. However, k-anonymous data loses its importance with loss of precision or information contained in the data. Existing k-anonymization approaches suffer from high information loss. In this paper, we present a heuristic k-anonymization algorithm that results in very low information loss compared to existing similar algorithms. Also, the average case complexity of our algorithm is not high. Experimental results show that the information loss in our algorithm is significantly lower than that of the current state-of-the-art algorithm for k-anonymization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R., Panigrahy, R., Thomas, D., Zhu, A.: Approximation algorithms for k-anonymity. Journal of Privacy Technology (2005)Google Scholar
  2. 2.
    Cormode, G., Li, N., Li, T., Srivastava, D.: Minimizing minimality and maximizing utility: Analyzing method-based attacks on anonymized data. In: Proc. VLDB, vol. 3, pp. 1045–1056 (2010)Google Scholar
  3. 3.
    Froomkin, A.: The Death of Privacy. Stanford Law Review 52, 1461–1543 (2000)CrossRefGoogle Scholar
  4. 4.
    Iyengar, V.: Transforming data to satisfy privacy constraints. In: Proc. Int. Conf. on Knowl. Discovery and Data Mining, KDD (2002)Google Scholar
  5. 5.
    LeFevre, K., DeWitt, D., Ramakrishnan, R.: Incognito: efficient full-domain k-anonymity. In: Proc. SIGMOD, pp. 49–60 (2005)Google Scholar
  6. 6.
    LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-anonymity. In: Proc. IEEE Int. Conf. on Data Eng. (ICDE), p. 25 (2006)Google Scholar
  7. 7.
    Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Proc. ACM SIGMOD-SIGACT-SIGART Symposium, PODS (2004)Google Scholar
  8. 8.
    Samarati, P., Sweeney, L.: Generalizing Data to Provide Anonymity when Disclosing Information. In: Proc. ACM SIGMOD-SIGACT-SIGART Symposium, PODS (1998)Google Scholar
  9. 9.
    Sweeney, L.: k-Anonymity: A Model for Protecting Privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 557–570 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Xiao, X., Tao, Y.: Anatomy: Simple and Effective Privacy Preservation. In: Proc. of VLDB, pp. 139–150 (2006)Google Scholar
  11. 11.
    Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.: Utility-Based Anonymization Using Local Recoding. In: Proc. Int. Conf. on Knowl. Discovery and Data Mining (KDD), pp. 785–790 (2006)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  • Md. Nurul Huda
    • 1
    Email author
  • Shigeki Yamada
    • 1
  • Noboru Sonehara
    • 1
  1. 1.National Institute of InformaticsTokyoJapan

Personalised recommendations