Effects of Spatial Scale in Cellular Automata Model for Land Use Change

Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 156)

Abstract

Cellular automata (CA) is an efficient model to simulate land use and coverage change (LUCC) process. However, the spatial scale decisions of geographic cellular automata are often made arbitrarily. This article investigates the effect of changing cell size and neighborhood configuration on the result prediction accuracy of the CA-Markov model and the morphology of land use change simulation result. The research shows that spatial scale has great impact on the simulation results of CA-Markov model. Therefore, the selection of cell size must be careful. Neighborhood configuration also has impact on the simulation results of CA-Markov model.

Keywords

Cellular Automaton Kappa Coefficient Cellular Automaton Patch Density Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lambin, E.F., Turner, B.L., et al.: The causes of land-use and land-cover change: moving beyond the myths. Global Environmental Change (2001), doi:10.1016/S0959-3780(01)00007-3Google Scholar
  2. 2.
    Meyer, W.B., Turner, I.B.L.: Change in land use and land cover: a global perspective. Cambridge University Press, Cambridge (1994)Google Scholar
  3. 3.
    Batty, M.: Urban evolution on the desktop: simulation with the use of extended cellular automata. Environment and Planning A (1998), doi:10.1068/a301943Google Scholar
  4. 4.
    Batty, M., Xie, Y.C., Sun, Z.L.: Modelling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems (1999), doi:10.1016/S0198-9715(99)00015-0Google Scholar
  5. 5.
    Li, X., Yeh, A.G.: Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science (2000), doi:10.1080/136588100240886Google Scholar
  6. 6.
    Li, X., Yeh, A.G.: Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science (2002), doi:10.1080/13658810210137004Google Scholar
  7. 7.
    Clarke, K.C., Hoppen, S., Gaydos, L.J.: A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design (1997), doi:10.1068/b240247Google Scholar
  8. 8.
    Couclelis, H.: From cellular automata to urban models: new principles for model development and implementation. Environment and Planning B: Planning and Design (1997), doi:10.1068/b240165Google Scholar
  9. 9.
    Jantz, C.A., Goetz, S.J., Shelley, M.K.: Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Balti-more-Washington metropolitan area. Environment and Planning B: Planning and Design (2003), doi:10.1068/b2983Google Scholar
  10. 10.
    Yang, X., Lo, C.P.: Modeling urban growth and landscape change in the Atlanta metropolitan area. International Journal of Geographical Information Science (2003), doi:10.1080/1365881031000086965Google Scholar
  11. 11.
    Torrens, P.M., O’Sullivan, D.: Cellular automata and urban simulation: where do we go from here? Environment and Planning B: Planning and Design (2001), doi:10.1068/b2802edGoogle Scholar
  12. 12.
    Ward, D.P., Murray, A.T., Phinn, S.R.: A stochastically constrained cellular model of urban growth. Computers, Environment and Urban Systems (2000), doi:10.1016/S0198-9715(00)00008-9Google Scholar
  13. 13.
    Wu, F.L., Webster, C.T.: Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environment and Planning B: Planning and Design (1998), doi:10.1068/b250103Google Scholar
  14. 14.
    Benenson, I.: Warning! The scale of land-use CA is changing! Computers, Environment and Urban Systems (2007), doi:10.1016/j.compenvurbsys.01.001Google Scholar
  15. 15.
    Kocabas, V., Dragicevic, S.: Assessing cellular automata model behaviour using a sensitivity analysis approach. Computers, Environment and Urban Systems (2006), doi:10.1016/j.compenvurbsys.2006.01.001Google Scholar
  16. 16.
    Jantz, C.A., Goetz, S.J.: Analysis of scale dependencies in an urban land-use-change model. International Journal of Geographical Information Science, doi:10.1080/13658810410001713425Google Scholar
  17. 17.
    Menard, A., Marceau, D.J.: Exploration of spatial scale sensitivity in geographic cellular automata. Environment and Planning B: Planning and Design (2005), doi:10.1068/b31163Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Geographical SciencesGuangzhou UniversityGuangzhouChina

Personalised recommendations