Improving Production in Small and Medium Enterprises

  • María L. BorrajoEmail author
  • Javier Bajo
  • Juan F. De Paz
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 157)


Knowledge management has gained relevance during the last years to improve business functioning. However, there is still a growing need of developing innovative tools that can help small to medium sized enterprises to detect and predict undesired situations. This article present a multi-agent system aimed at detecting risky situations. The multi-agent system incorporates models for reasoning and makes predictions using case-based reasoning. The models are used to detect risky situations and an providing decision support facilities. An initial prototype was developed and the results obtained related to small and medium enterprises in a real scenario are presented.


Hybrid neural intelligent system CBR MAS Business Intelligence business risk prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Calderon, T.G., Cheh, J.J.: A roadmap for future neural networks research in auditing and risk assessment. International Journal of Accounting Information Systems 3(4), 203–236 (2002)CrossRefGoogle Scholar
  2. 2.
    Chi-Jie, L., Tian-Shyug, L., Chih-Chou, C.: Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems 47(2), 115–125 (2009)CrossRefGoogle Scholar
  3. 3.
    Colbert, J.L.: Risk. Internal Auditor, 36–40 (1995)Google Scholar
  4. 4.
    Committee of Sponsoring Organizations of the Treadway Commission (COSO), Guidance on Monitoring Internal Control Systems. COSO’s Monitoring Guidance (2009)Google Scholar
  5. 5.
    Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 1895–1923 (1998)Google Scholar
  6. 6.
    Ding, Y., Song, X., Zen, Y.: Forecasting financial condition of Chinese listed companies based on support vector machine. Expert Systems with Applications 34(4), 3081–3089 (2008)CrossRefGoogle Scholar
  7. 7.
    Huang, S., Tsai, C., Yen, D.C., Cheng, Y.: A hybrid financial analysis model for business failure prediction. Expert Systems with Applications 35(3), 1034–1040 (2008)CrossRefGoogle Scholar
  8. 8.
    Khashman, A.: A neural network model for credit risk evaluation. International Journal of Neural Systems 19(4), 285–294 (2009)CrossRefGoogle Scholar
  9. 9.
    Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Francisco (1983)Google Scholar
  10. 10.
    Laza, R., Pavón, R., Corchado, J.M.: A Reasoning Model for CBR_BDI Agents Using an Adaptable Fuzzy Inference System. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS (LNAI), vol. 3040, pp. 96–106. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Sun, J., Li, H.: Financial distress prediction based on serial combination of multiple classifiers. Expert Systems with Applications 36(4), 8659–8666 (2009)CrossRefGoogle Scholar
  12. 12.
    Takeishi, A.: Knowledge Partitioning in the Interfirm Division of Labor: The Case of Automotive Product Development. Organization Science 13(3), 321–338 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • María L. Borrajo
    • 1
    Email author
  • Javier Bajo
    • 2
  • Juan F. De Paz
    • 3
  1. 1.Dept. InformáticaUniversity of VigoOurenseSpain
  2. 2.Facultad de InformáticaUniversidad Pontificia de SalamancaSalamancaSpain
  3. 3.Departamento Informática y AutomáticaUniversidad de SalamancaSalamancaSpain

Personalised recommendations