On Relational Learning for Information Extraction

  • Patricia Jiménez
  • José Luis Arjona
  • J. L. Álvarez
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 157)

Abstract

The extraction and integration of data from multiples sources are required in current companies which manage their business process by heterogeneous collaborating applications. However, integrating web applications is an arduous task because they are intended for human consumption and they do not provide APIs to access to their data automatically.Web Information extractors are used for this purpose but, they mostly provide ad-hoc highly domain dependent solutions. In this paper we aim at devising Information Extractors with a FOIL based core algorithm. It is a widely used first order rule learning algorithm since their rules are substantially more expressive and allow to learn complex concepts that cannot be represented in the attribute-value format. Furthermore, we focus on integrating other scoring functions to check if we can improve the rule search guide speeding up the learning process in order to make FOIL tractable in real-world domains such as Web sources.

Keywords

Information Extraction Inductive Logic Programming Prolog Program Order Rule Decision List 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bratko, I.: Prolog Programming for Artificial Intelligence. In: McGettrick, A.D., Van Leeuwen, J. (eds.). Addison-Wesley (1986)Google Scholar
  2. 2.
    Fürnkranz, J.: FOSSIL: A Robust Relational Learner. In: Proc. of the Eur. Conf. on Mach. Learn. (1994), doi:10.1007/3-540-57868-4_54Google Scholar
  3. 3.
    Freitag, D.: Information Extraction from HTML: Application of a General Machine Learning Approach. In: Proc. Fifteenth Natl. Conf. on Artif. Intell., pp. 517–523 (1998)Google Scholar
  4. 4.
    Gomez, A.J., Fernandez, G.: Induccion de definiciones logicas a partir de relaciones: mejoras en los heuristicos del sistema FOIL. In: Congr. Nac. Program. Declar., pp. 292–302 (1992)Google Scholar
  5. 5.
    Hinton, G.E.: Learning distributed representations of concepts. In: Proc. of the Eighth Annu. Conf. of the Cogn. Sci. Soc., pp. 1–12 (1986)Google Scholar
  6. 6.
    Lavrac, N., Dzeroski, S.: Inductive Logic Programming: Techniques and Applications. In: Lavrac, N., Dzeroski, S. (eds.) Inductive Logic Programming, pp. 173–179. Hellis Horwood, New York (1994)Google Scholar
  7. 7.
    Lavrac, N., Flach, P.A., Zupan, B.: Rule Evaluation Measures: A Unifying View. In: Proc. of the 9th Int. Workshop on Inductive Log. Program. (1999), doi:10.1007/3-540-48751-4_17Google Scholar
  8. 8.
    Landwehr, N., Kersting, K., De Raedt, L.: nFOIL: Integrating Naïve Bayes and FOIL. In: The 20th Natl. Conf. on Artif. Intell., pp. 795–800 (2005)Google Scholar
  9. 9.
    Michalski, R.S.: Pattern recognition as rule-guided inductive inference. IEEE Trans. on Pattern Analysis and Mach. Intell. 2, 349–361 (1980)MATHCrossRefGoogle Scholar
  10. 10.
    Muggleton, S.: Inverse Entailment and Progol. New Gener. Comput. J. (1995), doi:10.1007/BF03037227Google Scholar
  11. 11.
    Pazzani, M.J., Kibler, D.F.: The Utility of Knowledge in Inductive Learning. Mach. Learn. 9, 57–94 (1992)Google Scholar
  12. 12.
    Quinlan, J.R., Cameron-Jones, R.M.: FOIL: A Midterm Report. In: Proc. of the Eur. Conf. on Mach. Learn. (1993), doi:10.1007/3-540-56602-3_124Google Scholar
  13. 13.
    Quinlan, J.R., Cameron-Jones, R.M.: Induction of Logic Programs: FOIL and Related Systems. New Gener. Comput. J. 13, 287–312 (1995)CrossRefGoogle Scholar
  14. 14.
    Rissanen, J.: Universal coding, information, prediction, and estimation. IEEE Trans. Inf. Theory 30, 629–636 (1984)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Tan, P., Kumar, V., Srivastava, J.: Selecting the right objective measure for association analysis. Inf. Syst. (2004), doi:10.1016/S0306-4379(03)00072-3Google Scholar
  16. 16.
    Winston, P.H.: Learning Structural Descriptions from Examples. In: Winston, P.H. (ed.) The Psychology of Computer Vision, pp. 157–209. McGraw-Hill, New York (1975)Google Scholar
  17. 17.
    Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical machine learning tools and techniques with Java implementations, pp. 9–13. Morgan Kauffman (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Patricia Jiménez
    • 1
  • José Luis Arjona
    • 2
  • J. L. Álvarez
    • 2
  1. 1.University of SevillaSevillaSpain
  2. 2.University of Huelva, La RábidaHuelvaSpain

Personalised recommendations