Advertisement

The Effect of Membrane Receptor Clustering on Spatio-temporal Cell Signalling Dynamics

  • Bertrand R. Caré
  • Hédi A. Soula
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7223)

Abstract

Membrane receptors allow the cell to respond to changes in the composition of its external medium. The ligand-receptor interaction is the core of the signalling process and may be greatly influenced by the spatial configuration of receptors. As growing pieces of evidence suggest that receptors are not homogeneously spread on the cell surface, but tend to form clusters, we propose to investigate the implication of receptor clustering on ligand binding kinetics using a computational individual-based model. The model simulates the activation of receptors distributed in clusters or uniformly spread. The tracking of binding events allows the analysis of the effect of receptor clustering through the autocorrelation of the receptor activation signal and the empirical time distributions of binding events, which are still unreachable with in vitro or in vivo experiments. Results show that the apparent affinity of clustered receptors is decreased. Additionally, receptor occupation becomes spatially and temporally correlated, as clustering creates platforms of coherently activated receptors. Changes in the spatial characteristics of a signalling system at the microscopic scale globally affect its function in time and space.

Keywords

cell signalling receptor ligand clustering pathway binding kinetics equilibrium autocorrelation individual-based model computational biology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heffetz, D., Zick, Y.: Receptor aggregation is necessary for activation of the soluble insulin receptor kinase. The Journal of Biological Chemistry 261(2), 889–894 (1986)Google Scholar
  2. 2.
    Flrke, R.R., Schnaith, K., Passlack, W., Wichert, M., Kuehn, L., Fabry, M., Federwisch, M., Reinauer, H.: Hormone-triggered conformational changes within the insulin-receptor ectodomain: requirement for transmembrane anchorsGoogle Scholar
  3. 3.
    Murray, J.D.: Mathematical Biology: I. An Introduction. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry 58(1), 35–55 (2007)CrossRefGoogle Scholar
  5. 5.
    Berry, H.: Monte carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophysical Journal 83(4), 1891–1901 (2002)CrossRefGoogle Scholar
  6. 6.
    Kholodenko, B.N., Hoek, J.B., Westerhoff, H.V.: Why cytoplasmic signalling proteins should be recruited to cell membranes. Trends in Cell Biology 10(5), 173–178 (2000)CrossRefGoogle Scholar
  7. 7.
    Berg, H.C., Purcell, E.M.: Physics of chemoreception. Biophysical Journal 20(2), 193–219 (1977)CrossRefGoogle Scholar
  8. 8.
    Goldstein, B., Dembo, M.: Approximating the effects of diffusion on reversible reactions at the cell surface: ligand-receptor kinetics. Biophysical Journal 68(4), 1222–1230 (1995)CrossRefGoogle Scholar
  9. 9.
    Erickson, J., Goldstein, B., Holowka, D., Baird, B.: The effect of receptor density on the forward rate constant for binding of ligands to cell surface receptors. Biophysical Journal 52(4), 657–662 (1987)CrossRefGoogle Scholar
  10. 10.
    Zwanzig, R., Szabo, A.: Time dependent rate of diffusion-influenced ligand binding to receptors on cell surfaces. Biophysical Journal 60(3), 671–678 (1991)CrossRefGoogle Scholar
  11. 11.
    Endres, R.G., Wingreen, N.S.: Accuracy of direct gradient sensing by single cells. Proceedings of the National Academy of Sciences 105(41), 15749–15754 (2008)CrossRefGoogle Scholar
  12. 12.
    Endres, R.G., Wingreen, N.S.: Maximum likelihood and the single receptor. Physical Review Letters 103(15), 158101 (2009); PMID: 19905667CrossRefGoogle Scholar
  13. 13.
    Singer, S.J., Nicolson, G.L.: The fluid mosaic model of the structure of cell membranes. Science 175(23), 720–731 (1972)CrossRefGoogle Scholar
  14. 14.
    Koppel, D.E., Sheetz, M.P., Schindler, M.: Matrix control of protein diffusion in biological membranes. Proceedings of the National Academy of Sciences of the United States of America 78(6), 3576–3580 (1981)CrossRefGoogle Scholar
  15. 15.
    Chung, I., Akita, R., Vandlen, R., Toomre, D., Schlessinger, J., Mellman, I.: Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464(7289), 783–787 (2010)CrossRefGoogle Scholar
  16. 16.
    Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387(6633), 569–572 (1997)CrossRefGoogle Scholar
  17. 17.
    Simons, K., Toomre, D.: Lipid rafts and signal transduction. Nature Reviews. Molecular Cell Biology 1(1), 31–39 (2000)CrossRefGoogle Scholar
  18. 18.
    Schuck, S., Simons, K.: Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. Journal of Cell Science 117(25), 5955–5964 (2004)CrossRefGoogle Scholar
  19. 19.
    Brown, D.A., London, E.: Functions of lipid rafts in biological membranes. Annual Review of Cell and Developmental Biology 14(1), 111–136 (1998)CrossRefGoogle Scholar
  20. 20.
    Zhang, J., Leiderman, K., Pfeiffer, J.R., Wilson, B.S., Oliver, J.M., Steinberg, S.L.: Characterizing the topography of membrane receptors and signaling molecules from spatial patterns obtained using nanometer-scale electron-dense probes and electron microscopy. Micron. 37(1), 14–34 (2006) (Oxford, England: 1993)CrossRefGoogle Scholar
  21. 21.
    Gustavsson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., Lindroth, M., Peterson, K.H., Magnusson, K.-E., Strälfors, P.: Localization of the insulin receptor in caveolae of adipocyte plasma membrane. The FASEB Journal 13(14), 1961–1971 (1999)Google Scholar
  22. 22.
    Parpal, S.: Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. Journal of Biological Chemistry 276(13), 9670–9678 (2000)CrossRefGoogle Scholar
  23. 23.
    Lee, S., Mandic, J., Van Vliet, K.J.: Chemomechanical mapping of ligandreceptor binding kinetics on cells. Proceedings of the National Academy of Sciences of the United States of America 104(23), 9609–9614 (2007)CrossRefGoogle Scholar
  24. 24.
    Lim, K., Yin, J.: Localization of receptors in lipid rafts can inhibit signal transduction. Biotechnology and Bioengineering 90(6), 694–702 (2005)CrossRefGoogle Scholar
  25. 25.
    Vitte, J., Benoliel, A.-M., Eymeric, P., Bongrand, P., Pierres, A.: Beta-1 integrin-mediated adhesion be initiated by multiple incomplete bonds, thus accounting for the functional importance of receptor clustering. Biophysical Journal 86(6), 4059–4074 (2004)CrossRefGoogle Scholar
  26. 26.
    Bray, D., Levin, M.D., Morton-Firth, C.J.: Receptor clustering as a cellular mechanism to control sensitivity. Nature 393, 85–88 (1998)CrossRefGoogle Scholar
  27. 27.
    Mello, B.A., Shaw, L., Tu, Y.: Effects of receptor interaction in bacterial chemotaxis. Biophysical Journal 87(3), 1578–1595 (2004)CrossRefGoogle Scholar
  28. 28.
    Mahama, P.A., Linderman, J.J.: A monte carlo study of the dynamics of g-protein activation. Biophysical Journal 67(3), 1345–1357 (1994)CrossRefGoogle Scholar
  29. 29.
    Wanant, S., Quon, M.J.: Insulin receptor binding kinetics: modeling and simulation studies. Journal of Theoretical Biology 205(3), 355–364 (2000)CrossRefGoogle Scholar
  30. 30.
    Shea, L.D., Omann, G.M., Linderman, J.J.: Calculation of diffusion-limited kinetics for the reactions in collision coupling and receptor cross-linking. Biophysical Journal 73(6), 2949–2959 (1997)CrossRefGoogle Scholar
  31. 31.
    Shea, L.D., Linderman, J.J.: Compartmentalization of receptors and enzymes affects activation for a collision coupling mechanism. Journal of Theoretical Biology 191(3), 249–258 (1998)CrossRefGoogle Scholar
  32. 32.
    Gopalakrishnan, M.: Effects of receptor clustering on ligand dissociation kinetics: Theory and simulations. Biophysical Journal 89(6), 3686–3700 (2005)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ghosh, S., Gopalakrishnan, M., Forsten-Williams, K.: Self-consistent theory of reversible ligand binding to a spherical cell. Physical Biology 4(4), 344–354 (2008)CrossRefGoogle Scholar
  34. 34.
    Fallahi-Sichani, M., Linderman, J.J.: Lipid Raft-Mediated regulation of G-Protein coupled receptor signaling by ligands which influence receptor dimerization: A computational study. PLoS ONE 4(8), e6604 (2009)CrossRefGoogle Scholar
  35. 35.
    Caré, B.R., Soula, H.A.: Impact of receptor clustering on ligand binding. BMC Systems Biology 5(1), 48 (2011)CrossRefGoogle Scholar
  36. 36.
    Carpentier, J.L., Paccaud, J.P., Gorden, P., Rutter, W.J., Orci, L.: Insulin-induced surface redistribution regulates internalization of the insulin receptor and requires its autophosphorylation. Proceedings of the National Academy of Sciences of the United States of America 89(1), 162–166 (1992)CrossRefGoogle Scholar
  37. 37.
    Giudice, J., Leskow, F.C., Arndt-Jovin, D.J., Jovin, T.M., Jares-Erijman, E.A.: Differential endocytosis and signaling dynamics of insulin receptor variants IR-A and IR-B. Journal of Cell Science 124(Pt 5), 801–811 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bertrand R. Caré
    • 1
    • 3
  • Hédi A. Soula
    • 2
    • 3
  1. 1.Laboratoire d’InfoRmatique en Image et Systèmes d’information, CNRS UMR5205Université de LyonVilleurbanneFrance
  2. 2.Cardiovasculaire, Métabolisme, Diabétologie et Nutrition, Inserm UMR1060Université de LyonVilleurbanneFrance
  3. 3.EPI BEAGLE INRIAFrance

Personalised recommendations