Robotic UBIquitous COgnitive Network

  • Giuseppe Amato
  • Mathias Broxvall
  • Stefano Chessa
  • Mauro Dragone
  • Claudio Gennaro
  • Rafa López
  • Liam Maguire
  • T. Martin Mcginnity
  • Alessio Micheli
  • Arantxa Renteria
  • Gregory M. P. O’Hare
  • Federico Pecora
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 153)

Abstract

Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them self-adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The EU FP7 project RUBICON develops self-sustaining learning solutions yielding cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, agent control systems, wireless sensor networks and machine learning. This paper briefly illustrates how these techniques are being extended, integrated, and applied to AAL applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Broxvall, M., Seo, B.S., Kwon, W.Y.: The PEIS Kernel: A Middleware for Ubiquitous Robotics. In: Proc. of the IROS 2007 Workshop on Ubiquitous Robotic Space Design and Applications, San Diego, California (October 2007)Google Scholar
  2. 2.
    Amato, G., Chessa, S., Vairo, C.: MaDWiSe: A Distributed Stream Management System for Wireless Sensor Networks. Software Practice & Experience 40(5) (2010)Google Scholar
  3. 3.
    Muldoon, C., O Hare, G.M.P., O’ Grady, M.J.: AFME: An Agent Platform for Resource Constrained Devices. In: Proceedings of the ESAW 2006 (2006)Google Scholar
  4. 4.
    Pecora, F., Cirillo, M.: A Constraint-Based Approach for Plan Management in Intelligent Environments. In: Proc. of the Scheduling and Planning Applications Workshop at ICAPS 2009 (2009)Google Scholar
  5. 5.
    Bacciu, D., Gallicchio, C., Micheli, A., Chessa, S., Barsocchi, P.: Predicting User Movements in Heterogeneous Indoor Environments by Reservoir Computing. In: Proc. of the IJCAI Workshop on Space, Time and Ambient Intelligence (STAMI), Barcellona, Spain, pp. 1–6 (2011)Google Scholar
  6. 6.
    Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Computer Science Review 3(3), 127–149 (2009)CrossRefGoogle Scholar
  7. 7.
    Prasad, G., Leng, G., McGinnity, T.M.: On-line identification of self-organising fuzzy neural networks for modelling time-varying complex systems. In: Plamen, et al. (eds.) Evolving Intelligent Systems: Methodology and Applications, pp. 302–324. Wiley-IEEE Press (2010)Google Scholar
  8. 8.
    Mannella, F., Mirolli, M., Baldassarre, G.: Brain Mechanisms underlying Learning of Habits and Goal-Driven Behaviour: A Computational Model of Devaluation Experiments Tested with a Simulated Rat. In: Tosh, C. (ed.) Neural Network Models. Cambridge University PressGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Giuseppe Amato
    • 1
  • Mathias Broxvall
    • 2
  • Stefano Chessa
    • 3
  • Mauro Dragone
    • 4
  • Claudio Gennaro
    • 1
  • Rafa López
    • 5
  • Liam Maguire
    • 6
  • T. Martin Mcginnity
    • 6
  • Alessio Micheli
    • 3
  • Arantxa Renteria
    • 7
  • Gregory M. P. O’Hare
    • 4
  • Federico Pecora
    • 2
  1. 1.ISTI-CNRPisaItaly
  2. 2.Örebro UniversitetOrebroSweden
  3. 3.Università di PisaPisaItaly
  4. 4.University College DublinDublinIreland
  5. 5.Robotnik AutomationValenciaSpain
  6. 6.University of UlsterColeraineIreland
  7. 7.TecnaliaDerioSpain

Personalised recommendations