Multi-parametric Programming

Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 429)

Abstract

This chapter presents an overview of the approaches to solve multi-parametric programming problems. It is organized as follows. In Section 1.1, a general multi-parametric nonlinear programming (mp-NLP) problem is formulated and the Karush-Kuhn-Tucker (KKT) optimality conditions are presented. Then, the three main groups of methods to find a local minimum of a NLP problem for a given parameter vector are reviewed (Newton-type methods, penalty function methods and direct search methods). The Basic Sensitivity Theorem, which addresses the local regularity conditions for the optimal solution as function of the parameters is reviewed. Then, algorithms to find an approximate explicit solution of mp-NLP problems are described, which are based on an orthogonal (k–d tree) partition of the parameter space. Both convex and non-convex mp-NLP problems are considered. Procedures and heuristic rules for efficient splitting of a region in the parameter space and for handling the infeasible cases are formulated. In Section 1.2, a multi-parametric quadratic programming (mp-QP) problem is formulated and two approaches to find its exact explicit solution are described.

Keywords

Model Predictive Control Active Constraint Binary Search Tree Penalty Function Method Direct Search Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, L., Nazareth, J.L. (eds.): Linear and nonlinear conjugate gradient-related methods. Society for Industrial and Applied Mathematics, Philadelphia (1996)MATHGoogle Scholar
  2. 2.
    Alessio, A., Bemporad, A.: A Survey on Explicit Model Predictive Control. In: Magni, L., Raimondo, D.M., Allgöwer, F. (eds.) Nonlinear Model Predictive Control: Towards New Challenging Applications. LNCIS, vol. 384, pp. 345–369. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Armijo, L.: Minimization of functions having Lipschitz-continuous first partial derivatives. Pacific J. Math. 16, 1–3 (1966)MathSciNetMATHGoogle Scholar
  4. 4.
    Baotič, M.: An efficient algorithm for multi-parametric quadratic programming. Technical Report AUT02-05. Institut für Automatik, ETH Zürich (2002)Google Scholar
  5. 5.
    Bayat, F., Johansen, T.A., Jalali, A.A.: Flexible piecewise function evaluation methods with application to explicit model predictive control. In: Proceedings of the IEEE International Conference on Mechatronics, Istanbul (2011)Google Scholar
  6. 6.
    Bayat, F., Johansen, T.A., Jalali, A.A.: Combining truncated binary search tree and direct search for flexible piecewise function evaluation for explicit MPC in embedded microcontrollers. In: Proceedings of the IFAC World Congress, Milano (2011), www.IFAC-PapersOnLine.net
  7. 7.
    Bayat, F., Johansen, T.A., Jalali, A.A.: Using hash tables to manage time-storage complexity in point location problem: Application to explicit MPC. Automatica 47, 571–577 (2011)MATHCrossRefGoogle Scholar
  8. 8.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear programming: Theory and algorithms, 3rd edn. Wiley-Interscience, New Jersey (2006)MATHCrossRefGoogle Scholar
  9. 9.
    Bemporad, A., Filippi, C.: Suboptimal explicit MPC via approximate quadratic programming. In: Proceedings of the IEEE Conference on Decision and Control, Orlando, pp. 4851–4856 (2001)Google Scholar
  10. 10.
    Bemporad, A., Fukuda, K., Torrisi, F.D.: Convexity recognition of the union of polyhedra. Computational Geometry: Theory and Applications 18, 141–154 (2001)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Bemporad, A., Filippi, C.: An algorithm for approximate multiparametric convex programming. Computational Optimization and Applications 35, 87–108 (2006)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit solution of model predictive control via multiparametric quadratic programming. In: Proceedings of the American Control Conference, Chicago, Illinois, pp. 872–876 (2000)Google Scholar
  13. 13.
    Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic regulator for constrained systems. Automatica 38, 3–20 (2002)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Communications of the ACM 18, 509–517 (1975)MATHCrossRefGoogle Scholar
  15. 15.
    Box, M.J.: A new method of constrained optimization and a comparison with other methods. Computer J. 8, 42–52 (1965)MathSciNetMATHGoogle Scholar
  16. 16.
    Boyd, S., Vandenberghe, L.: Convex optimization. University Press, Cambridge (2004)MATHGoogle Scholar
  17. 17.
    Canale, M., Fagiano, L., Milanese, M.: Set membership approximation theory for fast implementation of model predictive control laws. Automatica 45, 45–54 (2009)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Cauchy, A.: Methode generale pour la resolution des systemes d’equations simultanees. Comp. Rend. Acad. Sci. Paris 536–538 (1847)Google Scholar
  19. 19.
    Christophersen, F., Kvasnica, M., Jones, C.N., Morari, M.: Efficient evaluation of piecewise control laws defined over a large number of polyhedra. In: Proceedings of the European Control Conference, pp. 2360–2367 (2007)Google Scholar
  20. 20.
    Deuflhard, P.: Newton methods for nonlinear problems. Springer, New York (2004)MATHGoogle Scholar
  21. 21.
    Diehl, M., Bock, H.G., Schlöder, J.P.: Newton-type methods for the approximate solution of nonlinear programming problems in real-time. In: Di Pillo, G., Murli, A. (eds.) High Performance Algorithms and Software for Nonlinear Optimization, pp. 177–200. Kluwer Academic Publishers B.V. (2003)Google Scholar
  22. 22.
    Domínguez, L.F., Narciso, D.A., Pistikopoulos, E.N.: Recent advances in multiparametric nonlinear programming. Computers and Chemical Engineering 34, 707–716 (2010)CrossRefGoogle Scholar
  23. 23.
    Domínguez, L.F., Pistikopoulos, E.N.: Quadratic approximation algorithm for multiparametric nonlinear programming problems. Technical report. Imperial College London (2009)Google Scholar
  24. 24.
    Dua, V., Pistikopoulos, E.N.: Algorithms for the solution of multi-parametric mixed-integer nonlinear optimization problems. Industrial & Engineering Chemistry Research 38, 3976–3987 (1999)CrossRefGoogle Scholar
  25. 25.
    Dua, V., Pistikopoulos, E.N.: An algorithm for the solution of multiparametric mixed integer linear programming problems. Annals of Operations Research 99, 123–139 (2000)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Fiacco, A.V.: Introduction to sensitivity and stability analysis in nonlinear programming. Academic Press, Orlando (1983)MATHGoogle Scholar
  27. 27.
    Finkel, D.E.: Global optimization with the DIRECT algorithm. Ph.D. thesis. North Carolina State University (2005)Google Scholar
  28. 28.
    Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Fuchs, A.N., Jones, C.N., Morari, M.: Optimized decision trees for point location in polytopic data sets - Application to explicit MPC. In: Proceedings of the American Control Conference, Baltimore, pp. 5507–5512 (2010)Google Scholar
  30. 30.
    Gablonsky, J.M.: Modifications of the DIRECT algorithm. Ph.D. thesis. North Carolina State University (2001)Google Scholar
  31. 31.
    Grancharova, A., Johansen, T.A.: Approximate explicit model predictive control incorporating heuristics. In: Proceedings of IEEE International Symposium on Computer Aided Control System Design, Glasgow, Scotland, U.K., pp. 92–97 (2002)Google Scholar
  32. 32.
    Grancharova, A., Johansen, T.A., Tøndel, P.: Computational aspects of approximate explicit nonlinear model predictive control. In: Findeisen, R., Allgöwer, F., Biegler, L. (eds.) Assessment and Future Directions of Nonlinear Model Predictive Control. LNCIS, vol. 358, pp. 181–192. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  33. 33.
    Grieder, P., Morari, M.: Complexity reduction of receding horizon control. In: Proceedings of the 42th IEEE Conference on Decision and Control, Maui, Hawaii, USA, pp. 3179–3184 (2003)Google Scholar
  34. 34.
    Gupta, A., Bhartiua, S., Nataraj, P.S.V.: A novel approach to multiparametric quadratic programming. Automatica 27, 2112–2117 (2011)CrossRefGoogle Scholar
  35. 35.
    Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. J. Assoc. Comput. Mach. 8, 212–229 (1961)MATHCrossRefGoogle Scholar
  36. 36.
    Horst, R., Tuy, H.: Global optimization. Springer, Berlin (1995)Google Scholar
  37. 37.
    Johansen, T.A.: On multi-parametric nonlinear programming and explicit nonlinear model predictive control. In: Proceedings of the IEEE Conference on Decision and Control, Las Vegas, NV, vol. 3, pp. 2768–2773 (2002)Google Scholar
  38. 38.
    Johansen, T.A.: Approximate explicit receding horizon control of constrained nonlinear systems. Automatica 40, 293–300 (2004)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Johansen, T.A., Grancharova, A.: Approximate explicit constrained linear model predictive control via orthogonal search tree. IEEE Transactions on Automatic Control 48, 810–815 (2003)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Johansen, T.A., Petersen, I., Slupphaug, O.: Explicit sub-optimal linear quadratic regulation with state and input constraints. Automatica 38, 1099–1111 (2002)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Johansen, T.A., Jackson, W., Schreiber, R., Tøndel, P.: Hardware synthesis of explicit model predictive controllers. IEEE Transactions Control Systems Technology 15, 191–197 (2007)CrossRefGoogle Scholar
  42. 42.
    Jones, D.R.: The DIRECT global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, vol. 1, pp. 431–440. Kluwer, Dordrecht (2001)CrossRefGoogle Scholar
  43. 43.
    Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. Journal of Optimization Theory and Applications 79, 157–181 (1993)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Kelley, C.T.: Iterative methods for optimization. Society for Industrial and Applied Mathematics, Philadelphia (1999)MATHCrossRefGoogle Scholar
  45. 45.
    Kojima, M.: Strongly stable stationary solutions in nonlinear programs. In: Robinson, S.M. (ed.) Analysis and Computation of Fixed Points, pp. 93–138. Academic Press, New York (1980)Google Scholar
  46. 46.
    Kvasnica, M., Grieder, P., Baotić, M., Morari, M.: Multi-Parametric Toolbox (MPT). In: Alur, R., Pappas, G.J. (eds.) Hybrid Systems: Computation and Control, HSCC 2004. LNCS, vol. 2993, pp. 448–462. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  47. 47.
    Kvasnica, M., Fikar, M.: Performance-lossless complexity reduction in explicit MPC. In: Proceedings of the IEEE Conference on Decision and Control, pp. 5270–5275 (2010)Google Scholar
  48. 48.
    Kvasnica, M., Löfberg, J., Fikar, M.: Stabilizing polynomial approximation of explicit MPC. Automatica 47, 2292–2297 (2011)MATHCrossRefGoogle Scholar
  49. 49.
    Lau, M.S.K., Yue, S.P., Ling, K.V., Maciejowski, J.M.: A comparison of interior point and active set methods for FPGA implementation of model predictive control. In: Proceedings of the European Control Conference 2009, Budapest, Hungary, pp. 156–161 (2009)Google Scholar
  50. 50.
    Levitin, E.S.: Perturbation theory in mathematical programming. Wiley (1994)Google Scholar
  51. 51.
    Lewis, R.M., Torczon, V., Trosset, M.W.: Direct search methods: then and now. Journal of Computational and Applied Mathematics 124, 191–207 (2000)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Mangasarian, O.L., Rosen, J.B.: Inequalities for stochastic nonlinear programming problems. Operations Research 12, 143–154 (1964)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Narciso, D.: Developments in nonlinear multiparametric programming and control. PhD thesis, London, U.K. (2009)Google Scholar
  54. 54.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer J. 7, 308–313 (1965)MATHGoogle Scholar
  55. 55.
    Nguyen, H.N., Gutman, P.O., Olaru, S., Hovd, M.: Explicit constraint control based on interpolation techniques for time-varying and uncertain linear discrete-time systems. In: Proceedings of the IFAC World Congress, Milano (2011), www.IFAC-PapersOnLine.net
  56. 56.
    Nocedal, J., Wright, S.J.: Numerical optimization. Springer, New York (1999)MATHCrossRefGoogle Scholar
  57. 57.
    Olaru, S., Dumur, D.: A parameterized polyhedra appraoch for explicit contrained predictive control. In: Proceedings of the IEEE Conference on Decision and Control, Bahamas, pp. 1580–1585 (2004)Google Scholar
  58. 58.
    Pistikopoulos, E.N., Georgiadis, M.C., Dua, V.: Multi-parametric programming: Theory, algorithms, and applications. Wiley-VCH (2007)Google Scholar
  59. 59.
    Piyawksii, S.A.: An algorithm for finding the absolute extremum of a function. USSR Computational Mathematics and Mathematical Physics 12, 57–67 (1972)CrossRefGoogle Scholar
  60. 60.
    Poggi, T., Comaschi, F., Storace, M.: Digital circuit realization of piecewise affine functions with non-uniform resolution: Theory and FPGA implementation. IEEE Trans. Circuits and Systems - II: Express Briefs 57, 131–135 (2010)CrossRefGoogle Scholar
  61. 61.
    Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G.A. (ed.) Numerical Analysis, Dundee 1977. Lecture Notes in Mathematics, vol. 630. Springer, Berlin (1978)Google Scholar
  62. 62.
    Ralph, D., Dempe, S.: Directional derivatives of the solution of a parametric nonlinear program. Mathematical Programming 70, 159–172 (1995)MathSciNetMATHGoogle Scholar
  63. 63.
    Rockafellar, R.T.: Convex analysis. Princeton University Press, New Jersey (1970)MATHGoogle Scholar
  64. 64.
    Scibilia, F., Olaru, S., Hovd, M.: Approximate explicit linear MPC via Delaunay tessellation. In: Proceedings of the European Control Conference, Budapest, Hungary (2009)Google Scholar
  65. 65.
    Seron, M.M., Goodwin, G.C., De Doná, J.A.: Characterization of receding horizon control for constrained linear systems. Asian J. Control 5, 271–286 (2003)CrossRefGoogle Scholar
  66. 66.
    Spendley, W., Hext, G.R., Himsworth, F.R.: Sequential applications of simplex designs in optimisation and evolutionary operation. Technometrics 4, 441 (1962)MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Spjøtvold, J., Kerrigan, E.C., Jones, C.N., Tøndel, P., Johansen, T.A.: On the facet-to-facet property of solutions to convex parametric quadratic programs. Automatica 42, 2209–2214 (2006)CrossRefGoogle Scholar
  68. 68.
    Spjøtvold, J., Rakovic, S.V., Tøndel, P., Johansen, T.A.: Utilizing reachability analysis in point location problems. In: Proceedings of the IEEE Conference on Decision and Control, San Diego (2006)Google Scholar
  69. 69.
    Spjøtvold, J., Tøndel, P., Johansen, T.A.: Continuous selection and unique polyhedral representation of solutions to convex parametric quadratic programs. Journal of Optimization Theory and Applications 134, 177–189 (2007)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Szücs, A., Kvasnica, M., Fikar, M.: A memory-efficient representation of explicit MPC solutions. In: Proceedings of the IEEE Conference on Decision and Control, Orlando (2011)Google Scholar
  71. 71.
    Tøndel, P., Johansen, T.A.: Complexity reduiction in explicit model predictive control. In: Proceedings of the IFAC World Congress, Barcelona (2002), www.IFAC-PapersOnLine.net
  72. 72.
    Tøndel, P., Johansen, T.A., Bemporad, A.: An algorithm for multi-parametric quadratic programming and explicit MPC solutions. Automatica 39, 489–497 (2003)CrossRefGoogle Scholar
  73. 73.
    Tøndel, P., Johansen, T.A., Bemporad, A.: Further results on multi-parametric quadratic programming. In: Proceedings of the IEEE Conference on Decision and Control, Maui (2003)Google Scholar
  74. 74.
    Tøndel, P., Johansen, T.A., Bemporad, A.: Evaluation of piecewise affine control via binary search tree. Automatica 39, 743–749 (2003)CrossRefGoogle Scholar
  75. 75.
    Wang, Y., Jones, C.N., Maciejowski, J.: Efficient point location via subdivision walking with application to explicit MPC. In: Proceedings of the European Control Conference, pp. 447–453 (2007)Google Scholar
  76. 76.
    Wright, S.J.: Primal-dual interior-point methods. SIAM Publications, Philadelphia (1997)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of System Engineering and RoboticsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Engineering CyberneticsNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations