Simulation and Highly Variable Environments: A Case Study in a Natural Roofing Slates Manufacturing Plant

  • D. Crespo Pereira
  • D. del Rio Vilas
  • N. Rego Monteil
  • R. Rios Prado

Abstract

High variability is a harmful factor for manufacturing performance that may be originated from multiple sources and whose effect might appear in different temporary levels. The case study analysed in this chapter constitutes a paradigmatic case of a process whose variability cannot be efficiently controlled and reduced. It also displays a complex behaviour in the generation of intermediate buffers. Simulation is employed as a tool for detailed modelling of elements and variability components capable of reproducing the system behaviour. A multilevel modelling approach to variability is validated and compared to a conventional static model in which process parameters are kept constant and only process cycle dependant variations are introduced. Results show the errors incurred by the simpler static approach and the necessity of incorporating a time series model capable of simulating the autocorrelation structure present in data. A new layout is proposed and analysed by means of the simulation model in order to assess its robustness to the present variability. The new layout removes unnecessary process steps and provides a smoother response to changes in the process parameters.

Keywords

Cycle Time Utilization Rate Time Series Model Discrete Event Simulation Target Format 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Penker, A., Barbu, M.C., Gronald, M.: Bottleneck analysis in MDF-production by means of discrete event simulation. International Journal of Simulation Modelling 6(1), 49–57 (2007)CrossRefGoogle Scholar
  2. 2.
    Mertens, K., Vaesen, I., Löffel, J., Kemps, B., Kamers, B., Zoons, J., Darius, P., Decuypere, E., De Baerdemaeker, J., De Ketelaere, B.: An intelligent control chart for monitoring of autocorrelated egg production process data based on a synergistic control strategy. Computers and Electronics in Agriculture 69(1), 100–111 (2009)CrossRefGoogle Scholar
  3. 3.
    Nachtwey, A., Riedel, R., Mueller, E.: Flexibility oriented design of production systems. In: 2009 International Conference on Computers & Industrial Engineering, pp. 720–724 (July 2009)Google Scholar
  4. 4.
    Schultz, K.: Overcoming the dark side of worker flexibility. Journal of Operations Management 21(1), 81–92 (2003)CrossRefGoogle Scholar
  5. 5.
    Bendoly, E., Prietula, M.: In ‘the zone’: The role of evolving skill and transitional workload on motivation and realized performance in operational tasks. International Journal of Operations & Production Management 28(12), 1130–1152 (2008)CrossRefGoogle Scholar
  6. 6.
    Powell, S.G., Schultz, K.L.: Throughput in Serial Lines with State-Dependent Behavior. Management Science 50(8), 1095–1105 (2004)CrossRefGoogle Scholar
  7. 7.
    Schultz, K.L., Juran, D.C., Boudreau, J.W.: The effects of low inventory on the development of productivity norms. Management Science 45(12), 1664–1678 (1999)MATHCrossRefGoogle Scholar
  8. 8.
    Arakawa, K., Ishikawa, T., Saito, Y., Ashikaga, T.: Individual differences on diurnal variations of the task performance. Computers Ind. Engineering 27(1-4), 389–392 (1994)CrossRefGoogle Scholar
  9. 9.
    Baines, T., Mason, S., Siebers, P.-O., Ladbrook, J.: Humans: the missing link in manufacturing simulation? Simulation Modelling Practice and Theory 12(7-8), 515–526 (2004)CrossRefGoogle Scholar
  10. 10.
    Aue, W.R., Arruda, J.E., Kass, S.J., Stanny, C.J.: Brain and Cognition Cyclic variations in sustained human performance. Brain and Cognition 71(3), 336–344 (2009)CrossRefGoogle Scholar
  11. 11.
    Fletcher, S.R., Baines, T.S., Harrison, D.K.: An investigation of production workers’ performance variations and the potential impact of attitudes. The International Journal of Advanced Manufacturing Technology 35(11-12), 1113–1123 (2006)CrossRefGoogle Scholar
  12. 12.
    Buzacott, J.: The impact of worker differences on production system output. International Journal of Production Economics 78(1), 37–44 (2002)CrossRefGoogle Scholar
  13. 13.
    Neumann, W.P., Winkel, J., Medbo, L., Magneberg, R., Mathiassen, S.E.: Production system design elements influencing productivity and ergonomics: A case study of parallel and serial flow strategies. International Journal of Operations & Production Management 26(8), 904–923 (2006)CrossRefGoogle Scholar
  14. 14.
    Schultz, K.L., Schoenherr, T., Nembhard, D.: An Example and a Proposal Concerning the Correlation of Worker Processing Times in Parallel Tasks. Management Science 56(1), 176–191 (2009)CrossRefGoogle Scholar
  15. 15.
    Mason, S.: Improving the design process for factories: Modeling human performance variation. Journal of Manufacturing Systems 24(1), 47–54 (2005)CrossRefGoogle Scholar
  16. 16.
    Shaaban, S., Mcnamara, T.: Unreliable Flow Lines with Jointly Unequal Operation Time Means, Variabilities and Buffer Sizes. In: Proceedings of the World Congress on Engineering and Computer Science, vol. II (2009)Google Scholar
  17. 17.
    D’Angelo, A.: Production variability and shop configuration: An experimental analysis. International Journal of Production Economics 68(1), 43–57 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Inman, R.R.: Empirical Evaluation of Exponential and Independence Assumptions in Queueing Models of Manufacturing Systems *. Production and Operations Management 8(4), 409–432 (1999)CrossRefGoogle Scholar
  19. 19.
    Colledani, M., Matta, A., Tolio, T.: Analysis of the production variability in multi-stage manufacturing systems. CIRP Annals - Manufacturing Technology 59(1), 449–452 (2010)CrossRefGoogle Scholar
  20. 20.
    He, X., Wu, S., Li, Q.: Production variability of production lines. International Journal of Production Economics 107(1), 78–87 (2007)CrossRefGoogle Scholar
  21. 21.
    Young, T.M., Winistorfer, P.M.: The effects of autocorrelation on real-time statistical process control with solutions for forest products manufacturers. Forest Products Journal 51(11/12), 70–77 (2001)Google Scholar
  22. 22.
    Mertens, K., et al.: An intelligent control chart for monitoring of autocorrelated egg production process data based on a synergistic control strategy. Computers and Electronics in Agriculture 69(1), 100–111 (2009)CrossRefGoogle Scholar
  23. 23.
    Mittler, M.: Autocorrelation of Cycle Semiconductor Manufacturing Times in Density. In: Proceedings of the 1995 Winter Simulation Conference, pp. 865–872 (1995)Google Scholar
  24. 24.
    del Rio Vilas, D., Crespo Pereira, D., Crespo Mariño, J.L., Garcia del Valle, A.: Modelling and Simulation of a Natural Roofing Slates Manufacturing Plant. In: Proceedings of The International Workshop on Modelling and Applied Simulation, vol. (c), pp. 232–239 (2009)Google Scholar
  25. 25.
    Rego Monteil, N., del Rio Vilas, D., Crespo Pereira, D., Rios Prado, R.: A Simulation-Based Ergonomic Evaluation for the Operational Improvement of the Slate Splitters Work. In: Proceedings of the 22nd European Modeling & Simulation Symposium, vol. (c), pp. 191–200 (2010)Google Scholar
  26. 26.
    Alfaro, M., Sepulveda, J.: Chaotic behavior in manufacturing systems. International Journal of Production Economics 101(1), 150–158 (2006)CrossRefGoogle Scholar
  27. 27.
    Clymer, J.R.: Simulation-based engineering of complex systems, 2nd edn. Wiley, Hoboken (2009)Google Scholar
  28. 28.
    R. D. C. Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing (2005) Google Scholar
  29. 29.
    Pfaff, B.: VAR, SVAR and SVEC Models: Implementation Within R Package vars. Journal of Statistical Software 27(4), 1–32 (2008)Google Scholar
  30. 30.
    Trapletti, A., Hornik, K.: tseries: Time Series Analysis and Computational Finance (2009), http://cran.r-project.org/package=tseries (accessed 2011)
  31. 31.
    Schultz, K.L., Schoenherr, T., Nembhard, D.: An Example and a Proposal Concerning the Correlation of Worker Processing Times in Parallel Tasks. Management Science 56(1), 176–191 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • D. Crespo Pereira
    • 1
  • D. del Rio Vilas
    • 1
  • N. Rego Monteil
    • 1
  • R. Rios Prado
    • 1
  1. 1.Integrated Group for Engineering ResearchUniversity of A CoruñaA CoruñaSpain

Personalised recommendations